4 resultados para Rietveld refinement
em National Center for Biotechnology Information - NCBI
Resumo:
Manganese oxide minerals have been used for thousands of years—by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry.
Resumo:
Recently, the target function for crystallographic refinement has been improved through a maximum likelihood analysis, which makes proper allowance for the effects of data quality, model errors, and incompleteness. The maximum likelihood target reduces the significance of false local minima during the refinement process, but it does not completely eliminate them, necessitating the use of stochastic optimization methods such as simulated annealing for poor initial models. It is shown that the combination of maximum likelihood with cross-validation, which reduces overfitting, and simulated annealing by torsion angle molecular dynamics, which simplifies the conformational search problem, results in a major improvement of the radius of convergence of refinement and the accuracy of the refined structure. Torsion angle molecular dynamics and the maximum likelihood target function interact synergistically, the combination of both methods being significantly more powerful than each method individually. This is demonstrated in realistic test cases at two typical minimum Bragg spacings (dmin = 2.0 and 2.8 Å, respectively), illustrating the broad applicability of the combined method. In an application to the refinement of a new crystal structure, the combined method automatically corrected a mistraced loop in a poor initial model, moving the backbone by 4 Å.
Resumo:
Recent advances in multidimensional NMR methodology have permitted solution structures of proteins in excess of 250 residues to be solved. In this paper, we discuss several methods of structure refinement that promise to increase the accuracy of macromolecular structures determined by NMR. These methods include the use of a conformational database potential and direct refinement against three-bond coupling constants, secondary 13C shifts, 1H shifts, T1/T2 ratios, and residual dipolar couplings. The latter two measurements provide long range restraints that are not accessible by other solution NMR parameters.
Resumo:
Mitral/tufted cells (M/T cells) and granule cells form reciprocal dendrodendritic synapses in the main olfactory bulb; the granule cell is excited by glutamate from the M/T cell and in turn inhibits M/T cells by gamma-aminobutyrate. The trans-synaptically excited granule cell is thought to induce lateral inhibition in neighboring M/T cells and to refine olfactory information. It remains, however, elusive how significantly and specifically this synaptic regulation contributes to the discrimination of different olfactory stimuli. This investigation concerns the mechanism of olfactory discrimination by single unit recordings of responses to a series of normal aliphatic aldehydes from individual rabbit M/T cells. This analysis revealed that inhibitory responses are evoked in a M/T cell by a defined subset of odor molecules with structures closely related to the excitatory odor molecules. Furthermore, blockade of the reciprocal synaptic transmission by the glutamate receptor antagonist or the gamma-aminobutyrate receptor antagonist markedly suppressed the odor-evoked inhibition, indicating that the inhibitory responses are evoked by lateral inhibition via the reciprocal synaptic transmission. The synaptic regulation in the olfactory bulb thus greatly enhances the tuning specificity of odor responses and would contribute to discrimination of olfactory information.