8 resultados para Reyman, Mena

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endogenous clock that drives circadian rhythms is thought to communicate temporal information within the cell via cycling downstream transcripts. A transcript encoding a glycine-rich RNA-binding protein, Atgrp7, in Arabidopsis thaliana undergoes circadian oscillations with peak levels in the evening. The AtGRP7 protein also cycles with a time delay so that Atgrp7 transcript levels decline when the AtGRP7 protein accumulates to high levels. After AtGRP7 protein concentration has fallen to trough levels, Atgrp7 transcript starts to reaccumulate. Overexpression of AtGRP7 in transgenic Arabidopsis plants severely depresses cycling of the endogenous Atgrp7 transcript. These data establish both transcript and protein as components of a negative feedback circuit capable of generating a stable oscillation. AtGRP7 overexpression also depresses the oscillation of the circadian-regulated transcript encoding the related RNA-binding protein AtGRP8 but does not affect the oscillation of transcripts such as cab or catalase mRNAs. We propose that the AtGRP7 autoregulatory loop represents a “slave” oscillator in Arabidopsis that receives temporal information from a central “master” oscillator, conserves the rhythmicity by negative feedback, and transduces it to the output pathway by regulating a subset of clock-controlled transcripts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DsbA, the disulfide bond catalyst of Escherichia coli, is a periplasmic protein having a thioredoxin-like Cys-30-Xaa-Xaa-Cys-33 motif. The Cys-30–Cys-33 disulfide is donated to a pair of cysteines on the target proteins. Although DsbA, having high oxidizing potential, is prone to reduction, it is maintained essentially all oxidized in vivo. DsbB, an integral membrane protein having two pairs of essential cysteines, reoxidizes DsbA that has been reduced upon functioning. It is not known, however, what might provide the overall oxidizing power to the DsbA–DsbB disulfide bond formation system. We now report that E. coli mutants defective in the hemA gene or in the ubiA-menA genes markedly accumulate the reduced form of DsbA during growth under the conditions of protoheme deprivation as well as ubiquinone/menaquinone deprivation. Disulfide bond formation of β-lactamase was impaired under these conditions. Intracellular state of DsbB was found to be affected by deprivation of quinones, such that it accumulates first as a reduced form and then as a form of a disulfide-linked complex with DsbA. This is followed by reduction of the bulk of DsbA molecules. These results suggest that the respiratory electron transfer chain participates in the oxidation of DsbA, by acting primarily on DsbB. It is remarkable that a cellular catalyst of protein folding is connected to the respiratory chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hox complex genes control spatial patterning mechanisms in the development of arthropod and vertebrate body plans. Hox genes are all expressed during embryogenesis in these groups, which are all directly developing organisms in that embryogenesis leads at once to formation of major elements of the respective adult body plans. In the maximally indirect development of a large variety of invertebrates, the process of embryogenesis leads only to a free-living, bilaterally organized feeding larva. Maximal indirect development is exemplified in sea urchins. The 5-fold radially symmetric adult body plan of the sea urchin is generated long after embryogenesis is complete, by a separate process occurring within imaginal tissues set aside in the larva. The single Hox gene complex of Strongylocentrotus purpuratus contains 10 genes, and expression of eight of these genes was measured by quantitative methods during both embryonic and larval developmental stages and also in adult tissues. Only two of these genes are used significantly during the entire process of embryogenesis per se, although all are copiously expressed during the stages when the adult body plan is forming in the imaginal rudiment. They are also all expressed in various combinations in adult tissues. Thus, development of a microscopic, free-living organism of bilaterian grade, the larva, does not appear to require expression of the Hox gene cluster as such, whereas development of the adult body plan does. These observations reflect on mechanisms by which bilaterian metazoans might have arisen in Precambrian evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Profilins are thought to play a central role in the regulation of de novo actin assembly by preventing spontaneous actin polymerization through the binding of actin monomers, and the adding of monomeric actin to the barbed actin-filament ends. Other cellular functions of profilin in membrane trafficking and lipid based signaling are also likely. Binding of profilins to signaling molecules such as Arp2/3 complex, Mena, VASP, N-WASP, dynamin I, and others, further implicates profilin and actin as regulators of diverse motile activities. In mouse, two profilins are expressed from two distinct genes. Profilin I is expressed at high levels in all tissues and throughout development, whereas profilin II is expressed in neuronal cells. To examine the function of profilin I in vivo, we generated a null profilin I (pfn1ko) allele in mice. Homozygous pfn1ko/ko mice are not viable. Pfn1ko/ko embryos died as early as the two-cell stage, and no pfn1ko/ko blastocysts were detectable. Adult pfn1ko/wt mice show a 50% reduction in profilin I expression with no apparent impairment of cell function. However, pfn1ko/wt embryos have reduced survival during embryogenesis compared with wild type. Although weakly expressed in early embryos, profilin II cannot compensate for lack of profilin I. Our results indicate that mouse profilin I is an essential protein that has dosage-dependent effects on cell division and survival during embryogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is becoming clear that an adequate level of long-chain highly unsaturated fatty acids in the nervous system is required for optimal function and development; however, the ability of infants to biosynthesize long-chain fatty acids is unknown. This study explores the capacity of human infants to convert 18-carbon essential fatty acids to their elongated and desaturated forms, in vivo. A newly developed gas chromatography/negative chemical ionization/mass spectrometry method employing 2H-labeled essential fatty acids allowed assessment of this in vivo conversion with very high sensitivity and selectivity. Our results demonstrate that human infants have the capacity to convert dietary essential fatty acids administered enterally as 2H-labeled ethyl esters to their longer-chain derivatives, transport them to plasma, and incorporate them into membrane lipids. The in vivo conversion of linoleic acid (18:2n6) to arachidonic acid (20:4n6) is demonstrated in human beings. All elongases/desaturases necessary for the conversion of linolenic acid (18:3n3) to docosahexaenoic acid (22:6n3) are also active in the first week after birth. Although the absolute amounts of n-3 fatty acid metabolites accumulated in plasma are greater than those of the n-6 family, estimates of the endogenous pools of 18:2n6 and 18:3n3 indicate that n-6 fatty acid conversion rates are greater than those of the n-3 family. While these data clearly demonstrate the capability of infants to biosynthesize 22:6n3, a lipid that is required for optimal neural development, the amounts produced in vivo from 18:3n3 may be inadequate to support the 22:6n3 level observed in breast-fed infants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nun gene product of prophage HK022 excludes phage lambda infection by blocking the expression of genes downstream from the lambda nut sequence. The Nun protein functions both by competing with lambda N transcription-antitermination protein and by actively inducing transcription termination on the lambda chromosome. We demonstrate that Nun binds directly to a stem-loop structure within nut RNA, boxB, which is also the target for the N antiterminator. The two proteins show comparable affinities for boxB and they compete with each other. Their interactions with boxB are similar, as shown by RNase protection experiments, NMR spectroscopy, and analysis of boxB mutants. Each protein binds the 5' strand of the boxB stem and the adjacent loop. The stem does not melt upon the binding of Nun or N, as the 3' strand remains sensitive to a double-strand-specific RNase. The binding of RNA partially protects Nun from proteolysis and changes its NMR spectra. Evidently, although Nun and N bind to the same surface of boxB RNA, their respective complexes interact differently with RNA polymerase, inducing transcription termination or antitermination, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single photon emission with computed tomography (SPECT) hexamethylphenylethyleneamineoxime technetium-99 images were analyzed by an optimal interpolative neural network (OINN) algorithm to determine whether the network could discriminate among clinically diagnosed groups of elderly normal, Alzheimer disease (AD), and vascular dementia (VD) subjects. After initial image preprocessing and registration, image features were obtained that were representative of the mean regional tissue uptake. These features were extracted from a given image by averaging the intensities over various regions defined by suitable masks. After training, the network classified independent trials of patients whose clinical diagnoses conformed to published criteria for probable AD or probable/possible VD. For the SPECT data used in the current tests, the OINN agreement was 80 and 86% for probable AD and probable/possible VD, respectively. These results suggest that artificial neural network methods offer potential in diagnoses from brain images and possibly in other areas of scientific research where complex patterns of data may have scientifically meaningful groupings that are not easily identifiable by the researcher.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription of downstream genes in the early operons of phage lambda requires a promoter-proximal element known as nut. This site acts in cis in the form of RNA to assemble a transcription antitermination complex which is composed of lambda N protein and at least four host factors. The nut-site RNA contains a small stem-loop structure called boxB. Here, we show that boxB RNA binds to N protein with high affinity and specificity. While N binding is confined to the 5' subdomain of the stem-loop, specific N recognition relies on both an intact stem-loop structure and two critical nucleotides in the pentamer loop. Substitutions of these nucleotides affect both N binding and antitermination. Remarkably, substitutions of other loop nucleotides also diminish antitermination in vivo, yet they have no detectable effect on N binding in vitro. These 3' loop mutants fail to support antitermination in a minimal system with RNA polymerase (RNAP), N, and the host factor NusA. Furthermore, the ability of NusA to stimulate the formation of the RNAP-boxB-N complex is diminished with these mutants. Hence, we suggest that boxB RNA performs two critical functions in antitermination. First, boxB binds to N and secures it near RNAP to enhance their interaction, presumably by increasing the local concentration of N. Second, boxB cooperates with NusA, most likely to bring N and RNAP in close contact and transform RNAP to the termination-resistant state.