10 resultados para Retinopathy Of Prematurity

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinopathy of prematurity is a blinding disease, initiated by lack of retinal vascular growth after premature birth. We show that lack of insulin-like growth factor I (IGF-I) in knockout mice prevents normal retinal vascular growth, despite the presence of vascular endothelial growth factor, important to vessel development. In vitro, low levels of IGF-I prevent vascular endothelial growth factor-induced activation of protein kinase B (Akt), a kinase critical for endothelial cell survival. Our results from studies in premature infants suggest that if the IGF-I level is sufficient after birth, normal vessel development occurs and retinopathy of prematurity does not develop. When IGF-I is persistently low, vessels cease to grow, maturing avascular retina becomes hypoxic and vascular endothelial growth factor accumulates in the vitreous. As IGF-I increases to a critical level, retinal neovascularization is triggered. These data indicate that serum IGF-I levels in premature infants can predict which infants will develop retinopathy of prematurity and further suggests that early restoration of IGF-I in premature infants to normal levels could prevent this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant blood vessel growth in the retina that underlies the pathology of proliferative diabetic retinopathy and retinopathy of prematurity is the result of the ischemia-driven disruption of the normally antiangiogenic environment of the retina. In this study, we show that a potent inhibitor of angiogenesis found naturally in the normal eye, pigment epithelium-derived growth factor (PEDF), inhibits such aberrant blood vessel growth in a murine model of ischemia-induced retinopathy. Inhibition was proportional to dose and systemic delivery of recombinant protein at daily doses as low as 2.2 mg/kg could prevent aberrant endothelial cells from crossing the inner limiting membrane. PEDF appeared to inhibit angiogenesis by causing apoptosis of activated endothelial cells, because it induced apoptosis in cultured endothelial cells and an 8-fold increase in apoptotic endothelial cells could be detected in situ when the ischemic retinas of PEDF-treated animals were compared with vehicle-treated controls. The ability of low doses of PEDF to curtail aberrant growth of ocular endothelial cells without overt harm to retinal morphology suggests that this natural protein may be beneficial in the treatment of a variety of retinal vasculopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-microns section averaged 47% +/- 4% (P < 0.001) and 37% +/- 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diseases characterized by retinal neovascularization are among the principal causes of visual loss worldwide. The hypoxia-stimulated expression of vascular endothelial growth factor (VEGF) has been implicated in the proliferation of new blood vessels. We have investigated the use of antisense phosphorothioate oligodeoxynucleotides against murine VEGF to inhibit retinal neovascularization and VEGF synthesis in a murine model of proliferative retinopathy. Intravitreal injections of two different antisense phosphorothioate oligodeoxynucleotides prior to the onset of proliferative retinopathy reduced new blood vessel growth a mean of 25 and 31% compared with controls. This inhibition was dependent on the concentration of antisense phosphorothioate oligodeoxynucleotides and resulted in a 40-66% reduction in the level of VEGF protein, as determined by Western blot analysis. Control (sense, nonspecific) phosphorothioate oligodeoxynucleotides did not cause a significant reduction in retinal neovascularization or VEGF protein levels. These data further establish a fundamental role for VEGF expression in ischemia-induced proliferative retinopathies and a potential therapeutic use for antisense phosphorothioate oligodeoxynucleotides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The peptide-binding motif of HLA-A29, the predisposing allele for birdshot retinopathy, was determined after acid-elution of endogenous peptides from purified HLA-A29 molecules. Individual and pooled HPLC fractions were sequenced by Edman degradation. Major anchor residues could be defined as glutamate at the second position of the peptide and as tyrosine at the carboxyl terminus. In vitro binding of polyglycine synthetic peptides to purified HLA-A29 molecules also revealed the need for an auxiliary anchor residue at the third position, preferably phenylalanine. By using this motif, we synthesized six peptides from the retinal soluble antigen, a candidate autoantigen in autoimmune uveoretinitis. Their in vitro binding was tested on HLA-A29 and also on HLA-B44 and HLA-B61, two alleles sharing close peptide-binding motifs. Two peptides derived from the carboxyl-terminal sequence of the human retinal soluble antigen bound efficiently to HLA-A29. This study could contribute to the prediction of T-cell epitopes from retinal autoantigens implicated in birdshot retinopathy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recoverin is a member of the EF-hand family of calcium-binding proteins involved in the transduction of light by vertebrate photoreceptors. Recoverin also was identified as an autoantigen in the degenerative disease of the retina known as cancer-associated retinopathy (CAR), a paraneoplastic syndrome whereby immunological events lead to the degeneration of photoreceptors in some individuals with cancer. In this study, we demonstrate that recoverin is expressed in the lung tumor of a CAR patient but not in similar tumors obtained from individuals without the associated retinopathy. Recoverin was identified intially by Western blot analysis of the CAR patient's biopsy tissue by using anti-recoverin antibodies generated against different regions of the recoverin molecule. In addition, cultured cells from the biopsy tissue expressed recoverin, as demonstrated by reverse transcription-PCR using RNA extracted from the cells. The immunodominant region of recoverin also was determined in this study by a solid-phase immunoassay employing overlapping heptapeptides encompassing the entire recoverin sequence. Two linear stretches of amino acids (residues 64-70, Lys-Ala-Tyr-Ala-Gln-His-Val; and 48-52, Gln-Phe-Gln-Ser-Ile) made up the major determinants. One of the same regions of the recoverin molecule (residues 64-70) also was uniquely immunopathogenic, causing photoreceptor degeneration upon immunization of Lewis rats with the corresponding peptide. These data demonstrate that the neural antigen recoverin more than likely is responsible for the immunological events associated with vision loss in some patients with cancer. These data also establish CAR as one of the few autoimmune-mediated diseases for which the specific self-antigen is known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans who have inherited the class I major histocompatibility allele HLA-A29 have a markedly increased relative risk of developing the eye disease termed birdshot chorioretinopathy. This disease affecting adults is characterized by symmetrically scattered, small, cream-colored spots in the fundus associated with retinal vasculopathy and inflammatory signs causing damage to the ocular structures, leading regularly to visual loss. To investigate the role of HLA-A29 in this disease, we introduced the HLA-A29 gene into mice. Aging HLA-A29 transgenic mice spontaneously developed retinopathy, showing a striking resemblance to the HLA-A29-associated chorioretinopathy. These results strongly suggest that HLA-A29 is involved in the pathogenesis of this disease. Elucidation of the role of HLA-A29 should be assisted by this transgenic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiogenesis underlies the majority of eye diseases that result in catastrophic loss of vision. Recent evidence has implicated the integrins alpha v beta 3 and alpha v beta 5 in the angiogenic process. We examined the expression of alpha v beta 3 and alpha v beta 5 in neovascular ocular tissue from patients with subretinal neovascularization from age-related macular degeneration or the presumed ocular histoplasmosis syndrome or retinal neovascularization from proliferative diabetic retinopathy (PDR). Only alpha v beta 3 was observed on blood vessels in ocular tissues with active neovascularization from patients with age-related macular degeneration or presumed ocular histoplasmosis, whereas both alpha v beta 3 and alpha v beta 5 were present on vascular cells in tissues from patients with PDR. Since we observed both integrins on vascular cells from tissues of patients with retinal neovascularization from PDR, we examined the effects of a systemically administered cyclic peptide antagonist of alpha v beta 3 and alpha v beta 5 on retinal angiogenesis in a murine model. This antagonist specifically blocked new blood vessel formation with no effect on established vessels. These results not only reinforce the concept that retinal and subretinal neovascular diseases are distinct pathological processes, but that antagonists of alpha v beta 3 and/or alpha v beta 5 may be effective in treating individuals with blinding eye disease associated with angiogenesis.