7 resultados para Restart
em National Center for Biotechnology Information - NCBI
Resumo:
Recombinational repair of replication forks can occur either to a crossover (XO) or noncrossover (non-XO) depending on Holliday junction resolution. Once the fork is repaired by recombination, PriA is important for restarting these forks in Escherichia coli. PriA mutants are Rec− and UV sensitive and have poor viability and 10-fold elevated basal levels of SOS expression. PriA sulB mutant cells and their nucleoids were studied by differential interference contrast and fluorescence microscopy of 4′,6-diamidino-2-phenylindole-stained log phase cells. Two populations of cells were seen. Eighty four percent appeared like wild type, and 16% of the cells were filamented and had poorly partitioned chromosomes (Par−). To probe potential mechanisms leading to the two populations of cells, mutations were added to the priA sulB mutant. Mutating sulA or introducing lexA3 decreased, but did not eliminate filamentation or defects in partitioning. Mutating either recA or recB virtually eliminated the Par− phenotype. Filamentation in the recB mutant decreased to 3%, but increased to 28% in the recA mutant. The ability to resolve and/or branch migrate Holliday junctions also appeared crucial in the priA mutant because removing either recG or ruvC was lethal. Lastly, it was tested whether the ability to resolve chromosome dimers caused by XOs was important in a priA mutant by mutating dif and the C-terminal portion of ftsK. Mutation of dif showed no change in phenotype whereas ftsK1∷cat was lethal with priA2∷kan. A model is proposed where the PriA-independent pathway of replication restart functions at forks that have been repaired to non-XOs.
Resumo:
The unwinding of the parental DNA duplex during replication causes a positive linking number difference, or superhelical strain, to build up around the elongating replication fork. The branching at the fork and this strain bring about different conformations from that of (−) supercoiled DNA that is not being replicated. The replicating DNA can form (+) precatenanes, in which the daughter DNAs are intertwined, and (+) supercoils. Topoisomerases have the essential role of relieving the superhelical strain by removing these structures. Stalled replication forks of molecules with a (+) superhelical strain have the additional option of regressing, forming a four-way junction at the replication fork. This four-way junction can be acted on by recombination enzymes to restart replication. Replication and chromosome folding are made easier by topological domain barriers, which sequester the substrates for topoisomerases into defined and concentrated regions. Domain barriers also allow replicated DNA to be (−) supercoiled. We discuss the importance of replicating DNA conformations and the roles of topoisomerases, focusing on recent work from our laboratory.
Resumo:
Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a four-stranded (Holliday) junction. Here we show that RecG can actively unwind the leading and lagging strand arms of model replication fork structures in vitro. Unwinding is achieved in each case by simultaneous interaction with and translocation along both the leading and lagging strand templates at a fork. Disruption of either of these interactions dramatically inhibits unwinding of the opposing duplex arm. Thus, RecG translocates simultaneously along two DNA strands, one with 5′-3′ and the other with 3′-5′ polarity. The unwinding of both nascent strands at a damaged fork, and their subsequent annealing to form a Holliday junction, may explain the ability of RecG to promote replication restart. Moreover, the preferential binding of partial forks lacking a leading strand suggests that RecG may have the ability to target stalled replication intermediates in vivo in which lagging strand synthesis has continued beyond the leading strand.
Resumo:
Replication forks formed at bacterial origins often encounter template roadblocks in the form of DNA adducts and frozen protein–DNA complexes, leading to replication-fork stalling and inactivation. Subsequent correction of the corrupting template lesion and origin-independent assembly of a new replisome therefore are required for survival of the bacterium. A number of models for replication-fork restart under these conditions posit that nascent strand regression at the stalled fork generates a Holliday junction that is a substrate for subsequent processing by recombination and repair enzymes. We show here that early replication intermediates containing replication forks stalled in vitro by the accumulation of excess positive supercoils could be cleaved by the Holliday junction resolvases RusA and RuvC. Cleavage by RusA was inhibited by the presence of RuvA and was stimulated by RecG, confirming the presence of Holliday junctions in the replication intermediate and supporting the previous proposal that RecG could catalyze nascent strand regression at stalled replication forks. Furthermore, RecG promoted Holliday junction formation when replication intermediates in which the replisome had been inactivated were negatively supercoiled, suggesting that under intracellular conditions, the action of RecG, or helicases with similar activities, is necessary for the catalysis of nascent strand regression.
Resumo:
Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid.
Resumo:
DNA polymerase V, composed of a heterotrimer of the DNA damage-inducible UmuC and UmuD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{^{\prime}}}}\end{equation*}\end{document} proteins, working in conjunction with RecA, single-stranded DNA (ssDNA)-binding protein (SSB), β sliding clamp, and γ clamp loading complex, are responsible for most SOS lesion-targeted mutations in Escherichia coli, by catalyzing translesion synthesis (TLS). DNA polymerase II, the product of the damage-inducible polB (dinA ) gene plays a pivotal role in replication-restart, a process that bypasses DNA damage in an error-free manner. Replication-restart takes place almost immediately after the DNA is damaged (≈2 min post-UV irradiation), whereas TLS occurs after pol V is induced ≈50 min later. We discuss recent data for pol V-catalyzed TLS and pol II-catalyzed replication-restart. Specific roles during TLS for pol V and each of its accessory factors have been recently determined. Although the precise molecular mechanism of pol II-dependent replication-restart remains to be elucidated, it has recently been shown to operate in conjunction with RecFOR and PriA proteins.
Resumo:
The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage constitutes the second enzymological activity of RNA polymerase along with polymerization/pyrophosphorolysis of RNA, whereas the Gre proteins merely enhance this intrinsic property.