4 resultados para Residence Time Distributions

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

By means of optical pumping with laser light it is possible to enhance the nuclear spin polarization of gaseous xenon by four to five orders of magnitude. The enhanced polarization has allowed advances in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI), including polarization transfer to molecules and imaging of lungs and other void spaces. A critical issue for such applications is the delivery of xenon to the sample while maintaining the polarization. Described herein is an efficient method for the introduction of laser-polarized xenon into systems of biological and medical interest for the purpose of obtaining highly enhanced NMR/MRI signals. Using this method, we have made the first observation of the time-resolved process of xenon penetrating the red blood cells in fresh human blood—the xenon residence time constant in the red blood cells was measured to be 20.4 ± 2 ms. The potential of certain biologically compatible solvents for delivery of laser-polarized xenon to tissues for NMR/MRI is discussed in light of their respective relaxation and partitioning properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (≈1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the most extensive analysis of body size in marine invertebrates to date, we show that the size–frequency distributions of northeastern Pacific bivalves at the provincial level are surprisingly invariant in modal and median size as well as size range, despite a 4-fold change in species richness from the tropics to the Arctic. The modal sizes and shapes of these size–frequency distributions are consistent with the predictions of an energetic model previously applied to terrestrial mammals and birds. However, analyses of the Miocene–Recent history of body sizes within 82 molluscan genera show little support for the expectation that the modal size is an evolutionary attractor over geological time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present).