16 resultados para Representations of Portugal

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In three experiments, electric brain waves of 19 subjects were recorded under several different experimental conditions for two purposes. One was to test how well we could recognize which sentence, from a set of 24 or 48 sentences, was being processed in the cortex. The other was to study the invariance of brain waves between subjects. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A least-squares criterion of fit between prototypes and test samples was used for classification. In all three experiments, averaging over subjects improved the recognition rates. The most significant finding was the following. When brain waves were averaged separately for two nonoverlapping groups of subjects, one for prototypes and the other for test samples, we were able to recognize correctly 90% of the brain waves generated by 48 different sentences about European geography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A least-squares criterion of fit between prototypes and test samples was used for classification. The most significant results were these. By averaging over different subjects, as well as trials, we created prototypes from brain waves evoked by simple visual images and test samples from brain waves evoked by auditory or visual words naming the visual images. We correctly recognized from 60% to 75% of the test-sample brain waves. The general conclusion is that simple shapes such as circles and single-color displays generate brain waves surprisingly similar to those generated by their verbal names. These results, taken together with extensive psychological studies of auditory and visual memory, strongly support the solution proposed for visual shapes, by Bishop Berkeley and David Hume in the 18th century, to the long-standing problem of how the mind represents simple abstract ideas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Representations of the (infinite) canonical anticommutation relations and the associated operator algebra, the fermion algebra, are studied. A “coupling constant” (in (0,1]) is defined for primary states of “finite type” of that algebra. Primary, faithful states of finite type with arbitrary coupling are constructed and classified. Their physical significance for quantum thermodynamical systems at high temperatures is discussed. The scope of this study is broadened to include a large class of operator algebras sharing some of the structural properties of the fermion algebra.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of the genetic changes in human tumors is often problematical because of the presence of normal stroma and the limited availability of pure tumor DNA. However, large amounts of highly reproducible “representationsof tumor and normal genomes can be made by PCR from nanogram amounts of restriction endonuclease cleaved DNA that has been ligated to oligonucleotide adaptors. We show here that representations are useful for many types of genetic analyses, including measuring relative gene copy number, loss of heterozygosity, and comparative genomic hybridization. Representations may be prepared even from sorted nuclei from fixed and archived tumor biopsies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study addresses the extent of divergence in the ascending somatosensory pathways of primates. Divergence of inputs from a particular body part at each successive synaptic step in these pathways results in a potential magnification of the representation of that body part in the somatosensory cortex, so that the representation can be expanded when peripheral input from other parts is lost, as in nerve lesions or amputations. Lesions of increasing size were placed in the representation of a finger in the ventral posterior thalamic nucleus (VPL) of macaque monkeys. After a survival period of 1–5 weeks, area 3b of the somatosensory cortex ipsilateral to the lesion was mapped physiologically, and the extent of the representation of the affected and adjacent fingers was determined. Lesions affecting less than 30% of the thalamic VPL nucleus were without effect upon the cortical representation of the finger whose thalamic representation was at the center of the lesion. Lesions affecting about 35% of the VPL nucleus resulted in a shrinkage of the cortical representation of the finger whose thalamic representation was lesioned, with concomitant expansion of the representations of adjacent fingers. Beyond 35–40%, the whole cortical representation of the hand became silent. These results suggest that divergence of brainstem and thalamocortical projections, although normally not expressed, are sufficiently great to maintain a representation after a major loss of inputs from the periphery. This is likely to be one mechanism of representational plasticity in the cerebral cortex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively “nonessential” genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human area V1 offers an excellent opportunity to study, using functional MRI, a range of properties in a specific cortical visual area, whose borders are defined objectively and convergently by retinotopic criteria. The retinotopy in V1 (also known as primary visual cortex, striate cortex, or Brodmann’s area 17) was defined in each subject by using both stationary and phase-encoded polar coordinate stimuli. Data from V1 and neighboring retinotopic areas were displayed on flattened cortical maps. In additional tests we revealed the paired cortical representations of the monocular “blind spot.” We also activated area V1 preferentially (relative to other extrastriate areas) by presenting radial gratings alternating between 6% and 100% contrast. Finally, we showed evidence for orientation selectivity in V1 by measuring transient functional MRI increases produced at the change in response to gratings of differing orientations. By systematically varying the orientations presented, we were able to measure the bandwidth of the orientation “transients” (45°).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At the level of the cochlear nucleus (CN), the auditory pathway divides into several parallel circuits, each of which provides a different representation of the acoustic signal. Here, the representation of the power spectrum of an acoustic signal is analyzed for two CN principal cells—chopper neurons of the ventral CN and type IV neurons of the dorsal CN. The analysis is based on a weighting function model that relates the discharge rate of a neuron to first- and second-order transformations of the power spectrum. In chopper neurons, the transformation of spectral level into rate is a linear (i.e., first-order) or nearly linear function. This transformation is a predominantly excitatory process involving multiple frequency components, centered in a narrow frequency range about best frequency, that usually are processed independently of each other. In contrast, type IV neurons encode spectral information linearly only near threshold. At higher stimulus levels, these neurons are strongly inhibited by spectral notches, a behavior that cannot be explained by level transformations of first- or second-order. Type IV weighting functions reveal complex excitatory and inhibitory interactions that involve frequency components spanning a wider range than that seen in choppers. These findings suggest that chopper and type IV neurons form parallel pathways of spectral information transmission that are governed by two different mechanisms. Although choppers use a predominantly linear mechanism to transmit tonotopic representations of spectra, type IV neurons use highly nonlinear processes to signal the presence of wide-band spectral features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the “cocktail party effect”) are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding how the brain processes vocal communication sounds is one of the most challenging problems in neuroscience. Our understanding of how the cortex accomplishes this unique task should greatly facilitate our understanding of cortical mechanisms in general. Perception of species-specific communication sounds is an important aspect of the auditory behavior of many animal species and is crucial for their social interactions, reproductive success, and survival. The principles of neural representations of these behaviorally important sounds in the cerebral cortex have direct implications for the neural mechanisms underlying human speech perception. Our progress in this area has been relatively slow, compared with our understanding of other auditory functions such as echolocation and sound localization. This article discusses previous and current studies in this field, with emphasis on nonhuman primates, and proposes a conceptual platform to further our exploration of this frontier. It is argued that the prerequisite condition for understanding cortical mechanisms underlying communication sound perception and production is an appropriate animal model. Three issues are central to this work: (i) neural encoding of statistical structure of communication sounds, (ii) the role of behavioral relevance in shaping cortical representations, and (iii) sensory–motor interactions between vocal production and perception systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss proofs of some new special cases of Serre’s conjecture on odd, degree 2 representations of Gℚ.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Working memory refers to the ability of the brain to store and manipulate information over brief time periods, ranging from seconds to minutes. As opposed to long-term memory, which is critically dependent upon hippocampal processing, critical substrates for working memory are distributed in a modality-specific fashion throughout cortex. N-methyl-D-aspartate (NMDA) receptors play a crucial role in the initiation of long-term memory. Neurochemical mechanisms underlying the transient memory storage required for working memory, however, remain obscure. Auditory sensory memory, which refers to the ability of the brain to retain transient representations of the physical features (e.g., pitch) of simple auditory stimuli for periods of up to approximately 30 sec, represents one of the simplest components of the brain working memory system. Functioning of the auditory sensory memory system is indexed by the generation of a well-defined event-related potential, termed mismatch negativity (MMN). MMN can thus be used as an objective index of auditory sensory memory functioning and a probe for investigating underlying neurochemical mechanisms. Monkeys generate cortical activity in response to deviant stimuli that closely resembles human MMN. This study uses a combination of intracortical recording and pharmacological micromanipulations in awake monkeys to demonstrate that both competitive and noncompetitive NMDA antagonists block the generation of MMN without affecting prior obligatory activity in primary auditory cortex. These findings suggest that, on a neurophysiological level, MMN represents selective current flow through open, unblocked NMDA channels. Furthermore, they suggest a crucial role of cortical NMDA receptors in the assessment of stimulus familiarity/unfamiliarity, which is a key process underlying working memory performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Culture consists of shared cognitive representations in the minds of individuals. This paper investigates the extent to which English speakers share the "same" semantic structure of English kinship terms. The semantic structure is defined as the arrangement of the terms relative to each other as represented in a metric space in which items judged more similar are placed closer to each other than items judged as less similar. The cognitive representation of the semantic structure, residing in the mind of an individual, is measured by judged similarity tasks involving comparisons among terms. Using six independent measurements, from each of 122 individuals, correspondence analysis represents the data in a common multidimensional spatial representation. Judged by a variety of statistical procedures, the individuals in our sample share virtually identical cognitive representations of the semantic structure of kinship terms. This model of culture accounts for 70-90% of the total variability in these data. We argue that our findings on kinship should generalize to all semantic domains--e.g., animals, emotions, etc. The investigation of semantic domains is important because they may reside in localized functional units in the brain, because they relate to a variety of cognitive processes, and because they have the potential to provide methods for diagnosing individual breakdowns in the structure of cognitive representations typical of such ailments as Alzheimer disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We summarize recent evidence that models of earthquake faults with dynamically unstable friction laws but no externally imposed heterogeneities can exhibit slip complexity. Two models are described here. The first is a one-dimensional model with velocity-weakening stick-slip friction; the second is a two-dimensional elastodynamic model with slip-weakening friction. Both exhibit small-event complexity and chaotic sequences of large characteristic events. The large events in both models are composed of Heaton pulses. We argue that the key ingredients of these models are reasonably accurate representations of the properties of real faults.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to carry out high-resolution genetic mapping at high throughput in the mouse is a critical rate-limiting step in the generation of genetically anchored contigs in physical mapping projects and the mapping of genetic loci for complex traits. To address this need, we have developed an efficient, high-resolution, large-scale genome mapping system. This system is based on the identification of polymorphic DNA sites between mouse strains by using interspersed repetitive sequence (IRS) PCR. Individual cloned IRS PCR products are hybridized to a DNA array of IRS PCR products derived from the DNA of individual mice segregating DNA sequences from the two parent strains. Since gel electrophoresis is not required, large numbers of samples can be genotyped in parallel. By using this approach, we have mapped > 450 polymorphic probes with filters containing the DNA of up to 517 backcross mice, potentially allowing resolution of 0.14 centimorgan. This approach also carries the potential for a high degree of efficiency in the integration of physical and genetic maps, since pooled DNAs representing libraries of yeast artificial chromosomes or other physical representations of the mouse genome can be addressed by hybridization of filter representations of the IRS PCR products of such libraries.