4 resultados para Repairs.

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3–10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3–10 reversion rate, whereas the hom3–10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The OGG1 gene encodes a highly conserved DNA glycosylase that repairs oxidized guanines in DNA. We have investigated the in vivo function of the Ogg1 protein in yeast mitochondria. We demonstrate that inactivation of ogg1 leads to at least a 2-fold increase in production of spontaneous mitochondrial mutants compared with wild-type. Using green fluorescent protein (GFP) we show that a GFP–Ogg1 fusion protein is transported to mitochondria. However, deletion of the first 11 amino acids from the N-terminus abolishes the transport of the GFP–Ogg1 fusion protein into the mitochondria. This analysis indicates that the N-terminus of Ogg1 contains the mitochondrial localization signal. We provide evidence that both yeast and human Ogg1 proteins protect the mitochondrial genome from spontaneous, as well as induced, oxidative damage. Genetic analyses revealed that the combined inactivation of OGG1 and OGG2 [encoding an isoform of the Ogg1 protein, also known as endonuclease three-like glycosylase I (Ntg1)] leads to suppression of spontaneously arising mutations in the mitochondrial genome when compared with the ogg1 single mutant or the wild-type. Together, these studies provide in vivo evidence for the repair of oxidative lesions in the mitochondrial genome by human and yeast Ogg1 proteins. Our study also identifies Ogg2 as a suppressor of oxidative mutagenesis in mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.