2 resultados para Rep??blica Centroafricana
em National Center for Biotechnology Information - NCBI
Resumo:
To examine the coupling of ATP hydrolysis to helicase translocation along DNA, we have purified and characterized complexes of the Escherichia coli Rep protein, a dimeric DNA helicase, covalently crosslinked to a single-stranded hexadecameric oligodeoxynucleotide (S). Crosslinked Rep monomers (PS) as well as singly ligated (P2S) and doubly ligated (P2S2) Rep dimers were characterized. The equilibrium and kinetic constants for Rep dimerization as well as the steady-state ATPase activities of both PS and P2S crosslinked complexes were identical to the values determined for un-crosslinked Rep complexes formed with dT16. Therefore, ATP hydrolysis by both PS and P2S complexes are not coupled to DNA dissociation. This also rules out a strictly unidirectional sliding mechanism for ATP-driven translocation along single-stranded DNA by either PS or the P2S dimer. However, ATP hydrolysis by the doubly ligated P2S2 Rep dimer is coupled to single-stranded DNA dissociation from one subunit of the dimer, although loosely (low efficiency). These results suggest that ATP hydrolysis can drive translocation of the dimeric Rep helicase along DNA by a "rolling" mechanism where the two DNA binding sites of the dimer alternately bind and release DNA. Such a mechanism is biologically important when one subunit binds duplex DNA, followed by subsequent unwinding.
Resumo:
The Rep protein of geminiviruses is the sole viral protein required for their DNA replication. The amino acid sequence of Rep protein contains an NTP binding consensus motif (P-loop). Here we show that purified Rep protein of tomato yellow leaf curl virus expressed in Escherichia coli exhibits an ATPase activity in vitro. Amino acid exchanges in the P-loop sequence of Rep causes a substantial decrease or loss of the ATPase activity. In vivo, mutant viruses carrying these Rep mutations do not replicate in plant cells. These results show that ATP binding by the Rep protein of geminiviruses is required for its function in viral DNA replication.