2 resultados para Renewable energy source

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the results of additional observations of the high energy source GRS 1915+105, which produces ejecta with apparent superluminal motions. The observations reported here were carried out with the Very Large Array at 3.5 cm and 20 cm. The 3.5-cm observations made during 1994 May allowed us to continue following the proper motions of the bright 1994 March 19 ejecta, as well as those of a subsequent, fainter ejection. The proper motions of the 1994 March 19 ejecta continued to be ballistic (i.e., constant) over the period of about 75 days where they remained detectable. From the observations in 1994 March-May we have identified three ejections of pairs of plasma clouds moving ballistically in approximately the same direction on the sky with similar proper motions. The 20-cm observations made during 1994 November and December were used to search, yet unsuccessfully, for extended jets or lobes associated with GRS 1915+105.