6 resultados para Renal injury
em National Center for Biotechnology Information - NCBI
Resumo:
We have previously shown that human munc13 (hmunc13) is up-regulated by hyperglycemia under in vitro conditions in human mesangial cell cultures. The purpose of the present study was to determine the cellular function of hmunc13. To do this, we have investigated the subcellular localization of hmunc13 in a transiently transfected renal cell line, opossum kidney cells. We have found that hmunc13 is a cytoplasmic protein and is translocated to the Golgi apparatus after phorbol ester stimulation. In addition, cells transfected with hmunc13 demonstrate apoptosis after treatment with phorbol ester, but cells transfected with an hmunc13 deletion mutant in which the diacylglycerol (C1) binding domain is absent exhibit no change in intracellular distribution and no induction of apoptosis in the presence of phorbol ester stimulation. We conclude that both the diacylglycerol-induced translocation and the apoptosis represent functional activity of hmunc13. We have also demonstrated that munc13-1 and munc13-2 are localized mainly to cortical epithelial cells in rat kidney and both are overexpressed under conditions of hyperglycemia in a streptozotocin-treated diabetic rat model. Taken together, our data suggest that hmunc13 serves as a diacylglycerol-activated, PKC-independent signaling pathway capable of inducing apoptosis and that this pathway may contribute to the renal cell complications of hyperglycemia.
Resumo:
The goal of this study was to determine whether sphingosine and ceramide, second messengers derived from sphingolipid breakdown, alter kidney proximal tubular cell viability and their adaptive responses to further damage. Adult human kidney proximal tubular (HK-2) cells were cultured for 0-20 hr in the presence or absence of sphingosine, sphingosine metabolites (sphingosine 1-phosphate, dimethylsphingosine), or C2, C8, or C16 ceramide. Acute cell injury was assessed by vital dye exclusion and tetrazolium dye transport. Their subsequent impact on superimposed ATP depletion/Ca2+ ionophore-induced damage was also assessed. Sphingosine (> or = 10 microM), sphingosine 1-phosphate, dimethylsphingosine, and selected ceramides (C2 and C8, but not C16) each induced rapid, dose-dependent cytotoxicity. This occurred in the absence of DNA laddering or morphologic changes of apoptosis, suggesting a necrotic form of cell death. Prolonged exposure (20 hr) to subtoxic sphingosine doses (< or = 7.5 microM) induced substantial cytoresistance to superimposed ATP depletion/Ca2+ ionophore-mediated damage. Conversely, neither short-term sphingosine treatment (< or = 8.5 hr) nor 20-hr exposures to any of the above sphingosine/ceramide derivatives/metabolites or various free fatty acids reproduced this effect. Sphingosine-induced cytoresistance was dissociated from the extent of cytosolic Ca2+ loading (indo-1 fluorescence), indicating a direct increase in cell resistance to attack. We conclude that sphingosine can exert dual effects on proximal renal tubular viability: in high concentrations it induces cell necrosis, whereas in low doses it initiates a cytoresistant state. These results could be reproduced in human foreskin fibroblasts, suggesting broad-based relevance to the area of acute cell injury and repair.
Resumo:
The role of the lysosomal proteases cathepsins B and L and the calcium-dependent cytosolic protease calpain in hypoxia-induced renal proximal tubular injury was investigated. As compared to normoxic tubules, cathepsin B and L activity, evaluated by the specific fluorescent substrate benzyloxycarbonyl-L-phenylalanyl-L-arginine-7-amido-4-methylcoumarin, was not increased in hypoxic tubules or the medium used for incubation of hypoxic tubules in spite of high lactate dehydrogenase (LDH) release into the medium during hypoxia. These data in rat proximal tubules suggest that cathepsins are not released from lysosomes and do not gain access to the medium during hypoxia. An assay for calpain activity in isolated proximal tubules using the fluorescent substrate N-succinyl-Leu-Tyr-7-amido-4-methylcoumarin was developed. The calcium ionophore ionomycin induced a dose-dependent increase in calpain activity. This increase in calpain activity occurred prior to cell membrane damage as assessed by LDH release. Tubular calpain activity increased significantly by 7.5 min of hypoxia, before there was significant LDH release, and further increased during 20 min of hypoxia. The cysteine protease inhibitor N-benzyloxycarbonyl-Val-Phe methyl ester (CBZ) markedly decreased LDH release after 20 min of hypoxia and completely prevented the increase in calpain activity during hypoxia. The increase in calpain activity during hypoxia and the inhibitor studies with CBZ therefore supported a role for calpain as a mediator of hypoxia-induced proximal tubular injury.
Resumo:
Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 +/- 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 +/- 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine resides, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 +/- 2% to 21 +/- 9%, and ezrin associated with the cytoskeleton decreased from 91 +/- 2% to 58 +/- 2%. Calyculin A (1 microM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.
Resumo:
Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria.
Resumo:
Hypoxia/reoxygenation is an important cause of tissue injury in a variety of organs and is classically considered to be a necrotic form of cell death. We examined the role of endonuclease activation, considered a characteristic feature of apoptosis, in hypoxia/reoxygenation injury. We demonstrate that subjecting rat renal proximal tubules to hypoxia/reoxygenation results in DNA strand breaks and DNA fragmentation (both by an in situ technique and by agarose gel electrophoresis), which precedes cell death. Hypoxia/reoxygenation resulted in an increase in DNA-degrading activity with an apparent molecular mass of 15 kDa on a substrate gel. This DNA-degrading activity was entirely calcium dependent and was blocked by the endonuclease inhibitor aurintricarboxylic acid. The protein extract from tubules subjected to hypoxia/reoxygenation cleaved intact nuclear DNA obtained from normal proximal tubules into small fragments, which further supports the presence of endonuclease activity. Despite unequivocal evidence of endonuclease activation, the morphologic features of apoptosis, including chromatin condensation, were not observed by light and electron microscopy. Endonuclease inhibitors, aurintricarboxylic acid and Evans blue, provided complete protection against DNA damage induced by hypoxia/reoxygenation but only partial protection against cell death. Taken together, our data provide strong evidence for a role of endonuclease activation as an early event, which is entirely responsible for the DNA damage and partially responsible for the cell death that occurs during hypoxia/reoxygenation injury. Our data also indicate that in hypoxia/reoxygenation injury endonuclease activation and DNA fragmentation occur without the morphological features of apoptosis.