8 resultados para Removal

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoids, vitamin A (retinol) and its metabolic derivatives, are required for normal vertebrate development. In murine embryonic stem (ES) cells, which remain undifferentiated when cultured in the presence of LIF (leukemia inhibitory factor), little metabolism of exogenously added retinol takes place. After LIF removal, ES cells metabolize exogenously added retinol to 4-hydroxyretinol and 4-oxoretinol and concomitantly differentiate. The conversion of retinol to 4-oxoretinol is a high-capacity reaction because most of the exogenous retinol is metabolized rapidly, even when cells are exposed to physiological (≈1 μM) concentrations of retinol in the medium. No retinoic acid or 4-oxoRA synthesis from retinol was detected in ES cells cultured with or without LIF. The cytochrome P450 enzyme CYP26 (retinoic acid hydroxylase) is responsible for the metabolism of retinol to 4-oxoretinol, and CYP26 mRNA is greatly induced (>15-fold) after LIF removal. Concomitant with the expression of CYP26, differentiating ES cells grown in the absence of LIF activate the expression of the differentiation marker gene FGF-5 whereas the expression of the stem cell marker gene FGF-4 decreases. The strong correlation between the production of polar metabolites of retinol and the differentiation of ES cells upon removal of LIF suggests that one important action of LIF in these cells is to prevent retinol metabolism to biologically active, polar metabolites such as 4-oxoretinol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thionein (T) has not been isolated previously from biological material. However, it is generated transiently in situ by removal of zinc from metallothionein under oxidoreductive conditions, particularly in the presence of selenium compounds. T very rapidly activates a group of enzymes in which zinc is bound at an inhibitory site. The reaction is selective, as is apparent from the fact that T does not remove zinc from the catalytic sites of zinc metalloenzymes. T instantaneously reverses the zinc inhibition with a stoichiometry commensurate with its known capacity to bind seven zinc atoms in the form of clusters in metallothionein. The zinc inhibition is much more pronounced than was previously reported, with dissociation constants in the low nanomolar range. Thus, T is an effective, endogenous chelating agent, suggesting the existence of a hitherto unknown and unrecognized biological regulatory system. T removes the metal from an inhibitory zinc-specific enzymatic site with a resultant marked increase of activity. The potential significance of this system is supported by the demonstration of its operations in enzymes involved in glycolysis and signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This case report describes removal of a knotted, subclavian, pulmonary artery catheter using a tracheostomy dilator. With this simple method an invasive procedure might be averted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial orientation of vertebrates is implemented by two complementary mechanisms: allothesis, processing the information about spatial relationships between the animal and perceptible landmarks, and idiothesis, processing the substratal and inertial information produced by the animal's active or passive movement through the environment. Both systems allow the animal to compute its position with respect to perceptible landmarks and to the already traversed portion of the path. In the present study, we examined the properties of substratal idiothesis deprived of relevant exteroceptive information. Rats searching for food pellets in an arena formed by a movable inner disk and a peripheral immobile belt were trained in darkness to avoid a 60° sector; rats that entered this sector received a mild foot shock. The punished sector was defined in the substratal idiothetic frame, and the rats had to determine the location of the shock sector with the use of substratal idiothesis only, because all putative intramaze cues were made irrelevant by angular displacements of the disk relative to the belt. Striking impairment of place avoidance by this “shuffling procedure” indicates that effective substratal idiothesis must be updated by exteroceptive intramaze cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectrum of DNA damage caused by reactive oxygen species includes a wide variety of modifications of purine and pyrimidine bases. Among these modified bases, 7,8-dihydro-8-oxoguanine (8-oxoG) is an important mutagenic lesion. Base excision repair is a critical mechanism for preventing mutations by removing the oxidative lesion from the DNA. That the spontaneous mutation frequency of the Escherichia coli mutT mutant is much higher than that of the mutM or mutY mutant indicates a significant potential for mutation due to 8-oxoG incorporation opposite A and G during DNA replication. In fact, the removal of A and G in such a situation by MutY protein would fix rather than prevent mutation. This suggests the need for differential removal of 8-oxoG when incorporated into DNA, versus being generated in situ. In this study we demonstrate that E.coli Nth protein (endonuclease III) has an 8-oxoG DNA glycosylase/AP lyase activity which removes 8-oxoG preferentially from 8-oxoG/G mispairs. The MutM and Nei proteins are also capable of removing 8-oxoG from mispairs. The frequency of spontaneous G:C→C:G transversions was significantly increased in E.coli CC103mutMnthnei mutants compared with wild-type, mutM, nth, nei, mutMnei, mutMnth and nthnei strains. From these results it is concluded that Nth protein, together with the MutM and Nei proteins, is involved in the repair of 8-oxoG when it is incorporated opposite G. Furthermore, we found that human hNTH1 protein, a homolog of E.coli Nth protein, has similar DNA glycosylase/AP lyase activity that removes 8-oxoG from 8-oxoG/G mispairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two endocytic receptors, the low density lipoprotein (LDL) receptor (LDLR) and the LDLR-related protein (LRP), are thought to act in concert in the hepatic uptake of partially metabolized dietary lipoproteins, the chylomicron remnants. We have evaluated the role of these two receptors in the hepatic metabolism of chylomicron remnants in normal mice and in LDLR-deficient [LDLR (-/-)] mice. The rate of chylomicron remnant removal by the liver was normal up to 30 min after intravenous injection of chylomicrons into LDLR (-/-) mice and was unaffected by receptor-associated protein (RAP), a potent inhibitor of ligand binding to LRP. In contrast, endocytosis of the remnants by the hepatocytes, measured by their accumulation in the endosomal fraction and by the rate of hydrolysis of component cholesteryl esters, was dramatically reduced in the absence of the LDLR. Coadministration of RAP prevented the continuing hepatic removal of chylomicron remnants in LDL (-/-) mice after 30 min, consistent with blockade of the slow endocytosis by a RAP-sensitive process. Taken together with previous studies, our results are consistent with a model in which the initial hepatic removal of chylomicron remnants is primarily mediated by mechanisms that do not include LDLR or LRP, possibly involving glycosaminoglycan-bound hepatic lipase and apolipoprotein E. After the remnants bind to these alternative sites on the hepatocyte surface, endocytosis is predominantly mediated by the LDLR and also by a slower and less efficient backup process that is RAP sensitive and therefore most likely involves LRP.