2 resultados para Relativistic dissipative hydrodynamics
em National Center for Biotechnology Information - NCBI
Resumo:
Intracellular water concentrations in single living cells were visualized by nonlinear coherent anti-Stokes Raman scattering (CARS) microscopy. In combination with isotopic exchange measurements, CARS microscopy allowed the real-time observation of transient intracellular hydrodynamics at a high spatial resolution. Studies of the hydrodynamics in the microorganism Dictyostelium discoideum indicated the presence of a microscopic region near the plasma membrane where the mobility of water molecules is severely restricted. Modeling the transient hydrodynamics eventuated in the determination of cell-specific cytosolic diffusion and plasma membrane permeability constants. Our experiments demonstrate that CARS microscopy offers an invaluable tool for probing single-cell water dynamics.
Resumo:
Self-organization is a common theme in biology. One mechanism of self-organization is the creation of chemical patterns by the diffusion of chemical reactants and their nonlinear interactions. We have recently observed sustained unidirectional traveling chemical redox [NAD(P)H − NAD(P)+] waves within living polarized neutrophils. The present study shows that an intracellular metabolic wave responds to formyl peptide receptor agonists, but not antagonists, by splitting into two waves traveling in opposite directions along a cell's long axis. Similar effects were noted with other neutrophil-activating substances. Moreover, when cells were exposed to an N-formyl-methionyl-leucyl-phenylalanine (FMLP) gradient whose source was perpendicular to the cell's long axis, cell metabolism was locally perturbed with reorientation of the pattern in a direction perpendicular to the initial cellular axis. Thus, extracellular activating signals and the signals' spatial cues are translated into distinct intracellular dissipative structures.