2 resultados para Relational approach to information literacy

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the origin and evolution of biochemical pathways in microorganisms, we have developed methods and software for automatic, large-scale reconstructions of phylogenetic relationships. We define the complete set of phylogenetic trees derived from the proteome of an organism as the phylome and introduce the term phylogenetic connection as a concept that describes the relative relationships between taxa in a tree. A query system has been incorporated into the system so as to allow searches for defined categories of trees within the phylome. As a complement, we have developed the pyphy system for visualising the results of complex queries on phylogenetic connections, genomic locations and functional assignments in a graphical format. Our phylogenomics approach, which links phylogenetic information to the flow of biochemical pathways within and among microbial species, has been used to examine more than 8000 phylogenetic trees from seven microbial genomes. The results have revealed a rich web of phylogenetic connections. However, the separation of Bacteria and Archaea into two separate domains remains robust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.