197 resultados para Regulated Intramembrane Proteolysis

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NH2-terminal domains of membrane-bound sterol regulatory element-binding proteins (SREBPs) are released into the cytosol by regulated intramembrane proteolysis, after which they enter the nucleus to activate genes encoding lipid biosynthetic enzymes. Intramembrane proteolysis is catalyzed by Site-2 protease (S2P), a hydrophobic zinc metalloprotease that cleaves SREBPs at a membrane-embedded leucine-cysteine bond. In the current study, we use domain-swapping methods to localize the residues within the SREBP-2 membrane-spanning segment that are required for cleavage by S2P. The studies reveal a requirement for an asparagine-proline sequence in the middle third of the transmembrane segment. We propose a model in which the asparagine-proline sequence serves as an NH2-terminal cap for a portion of the transmembrane α-helix of SREBP, allowing the remainder of the α-helix to unwind partially to expose the peptide bond for cleavage by S2P.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present evidence that the sporulation protein SpoIVFB of Bacillus subtilis is a member of a newly recognized family of metalloproteases that have catalytic centers adjacent to or within the membrane. SpoIVFB is required for converting the membrane-associated precursor protein, pro-σK, to the mature and active transcription factor σK by proteolytic removal of an N-terminal extension of 20 amino acids. SpoIVFB and other family members share the conserved sequence HEXXH, a hallmark of metalloproteases, as well as a second conserved motif NPDG, which is unique to the family. Both motifs, which are expected to form the catalytic center of the protease, overlap hydrophobic segments that are predicted to be separate transmembrane domains. The only other characterized member of this family of membrane-embedded metalloproteases is the mammalian Site-2 protease (S2P), which is required for the intramembrane cleavage of the eukaryotic transcription factor sterol regulatory element binding protein (SREBP). We report that amino acid substitutions in the two conserved motifs of SpoIVFB impair pro-σK processing and σK-directed gene expression during sporulation. These results and those from a similar analysis of S2P support the interpretation that both proteins are founding members of a family of metalloproteases involved in the activation of membrane-associated transcription factors. Thus, the pathways that govern the activation of the prokaryotic transcription factor pro-σK and the mammalian transcription factor SREBP not only are analogous but also use processing enzymes with strikingly homologous features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Invariant chain (Ii) is an intracellular type II transmembrane glycoprotein that is associated with major histocompatibility complex class II molecules during biosynthesis. Ii exists in two alternatively spliced forms, p31 and p41. Both p31 and p41 facilitate folding of class II molecules, promote egress from the endoplasmic reticulum, prevent premature peptide binding, and enhance localization to proteolytic endosomal compartments that are thought to be the sites for Ii degradation, antigen processing, and class II-peptide association. In spite of the dramatic and apparently equivalent effects that p31 and p41 have on class II biosynthesis, the ability of invariant chain to enhance antigen presentation to T cells is mostly restricted to p41. Here we show that degradation of Ii leads to the generation of a 12-kDa amino-terminal fragment that in p41-positive, but not in p31-positive, cells remains associated with class II molecules for an extended time. Interestingly, we find that coexpression of the two isoforms results in a change in the pattern of p31 degradation such that endosomal processing of p31 also leads to extended association of a similar 12-kDa fragment with class II molecules. These data raise the possibility that p41 may have the ability to impart its pattern of proteolytic processing on p31 molecules expressed in the same cells. This would enable a small number of p41 molecules to modify the post-translational transport and/or processing of an entire cohort of class II-Ii complexes in a manner that could account for the unique ability of p41 to enhance antigen presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When treated with heat-killed bacterial cells, mosquito cells in culture respond by up-regulating several proteins. Among these is a 66-kDa protein (p66) that is secreted from cells derived from both Aedes aegypti and Aedes albopictus. p66 was degraded by proteolysis and gave a virtually identical pattern of peptide products for each mosquito species. The sequence of one peptide (31 amino acids) was determined and found to have similarity to insect transferrins. By using conserved regions of insect transferrin sequences, degenerate oligonucleotide PCR primers were designed and used to isolate a cDNA clone encoding an A. aegypti transferrin. The encoded protein contained a signal sequence that, when cleaved, would yield a mature protein of 68 kDa. It contained the 31-amino acid peptide, and the 3′ end exactly matched a cDNA encoding a polypeptide that is up-regulated when A. aegypti encapsulates filarial worms [Beerntsen, B. T., Severson, D. W. & Christensen, B. M. (1994) Exp. Parasitol. 79, 312–321]. This transferrin, like those of two other insect species, has conserved iron-binding residues in the N-terminal lobe but not in the C-terminal lobe, which also has large deletions in the polypeptide chain, compared with transferrins with functional C-terminal lobes. The hypothesis is developed that this transferrin plays a role similar to vertebrate lactoferrin in sequestering iron from invading organisms and that degradation of the structure of the C-terminal lobe might be a mechanism for evading pathogens that elaborate transferrin receptors to tap sequestered iron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blocking of G1 progression by fission yeast pheromones requires inhibition of the cyclin-dependent kinase cdc2p associated with the B-cyclins cdc13p and cig2p. We show that cyclosome-mediated degradation of cdc13p and cig2p is necessary for down-regulation of B-cyclin–associated cdc2p kinase activity and for phermone-induced G1 arrest. The cyclin-dependent kinase inhibitor rum1p is also required to maintain this G1 arrest; it binds both cdc13p and cig2p and is specifically required for cdc13p proteolysis. We propose that rum1p acts as an adaptor targeting cdc13p for degradation by the cyclosome. In contrast, the cig2p–cdc2p kinase can be down-regulated, and the cyclin cig2p can be proteolyzed independently of rum1p. We suggest that pheromone signaling inhibits the cig2p–cdc2p kinase, bringing about a transient G1 arrest. As a consequence, rum1p levels increase, thus inhibiting and inducing proteolysis of the cdc13p–cdc2p kinase; this is necessary to maintain G1 arrest. We have also shown that pheromone-induced transcription occurs only in G1 and is independent of rum1p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase–anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C–dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1–S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of the RpoS (σS) subunit of RNA polymerase in Escherichia coli is a prime example of regulated proteolysis in prokaryotes. RpoS turnover depends on ClpXP protease, the response regulator RssB, and a hitherto uncharacterized “turnover element” within RpoS itself. Here we localize the turnover element to a small element (around the crucial amino acid lysine-173) directly downstream of the promoter-recognizing region 2.4 in RpoS. Its sequence as well as its location identify the turnover element as a unique proteolysis-promoting motif. This element is shown to be a site of interaction with RssB. Thus, RssB is functionally unique among response regulators as a direct recognition factor in ClpXP-dependent RpoS proteolysis. Binding of RssB to RpoS is stimulated by phosphorylation of the RssB receiver domain, suggesting that environmental stress affects RpoS proteolysis by modulating RssB affinity for RpoS. Initial evidence indicates that lysine-173 in RpoS, besides being essential of RpoS proteolysis, may play a role in promoter recognition. Thus the same region in RpoS is crucial for proteolysis as well as for activity as a transcription factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most plants have the ability to respond to fluctuations in light to minimize damage to the photosynthetic apparatus. A proteolytic activity has been discovered that is involved in the degradation of the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCII) when the antenna size of photosystem II is reduced upon acclimation of plants from low to high light intensities. This ATP-dependent proteolytic activity is of the serine or cysteine type and is associated with the outer membrane surface of the stroma-exposed thylakoid regions. The identity of the protease is not known, but it does not correspond to the recently identified chloroplast ATP-dependent proteases Clp and FtsH, which are homologs to bacterial enzymes. The acclimative response shows a delay of 2 d after transfer of the leaves to high light. This lag period was shown to be attributed to expression or activation of the responsible protease. Furthermore, the LHCII degradation was found to be regulated at the substrate level. The degradation process involves lateral migration of LHCII from the appressed to the nonappressed thylakoid regions, which is the location for the responsible protease. Phosphorylated LHCII was found to be a poor substrate for degradation in comparison with the unphosphorylated form of the protein. The relationship between LHCII degradation and other regulatory proteolytic processes in the thylakoid membrane, such as D1-protein degradation, is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA damage-inducible mutagenesis in Escherichia coli is largely dependent upon the activity of the UmuD (UmuD') and UmuC proteins. The intracellular level of these proteins is tightly regulated at both the transcriptional and the posttranslational levels. Such regulation presumably allows cells to deal with DNA damage via error-free repair pathways before being committed to error-prone pathways. We have recently discovered that as part of this elaborate regulation, both the UmuD and the UmuC proteins are rapidly degraded in vivo. We report here that the enzyme responsible for their degradation is the ATP-dependent serine protease, Lon. In contrast, UmuD' (the posttranslational product and mutagenically active form of UmuD) is degraded at a much reduced rate by Lon, but is instead rapidly degraded by another ATP-dependent protease, ClpXP. Interestingly, UmuD' is rapidly degraded by ClpXP only when it is in a heterodimeric complex with UmuD. Formation of UmuD/UmuD' heterodimers in preference to UmuD' homodimers therefore targets UmuD' protein for proteolysis. Such a mechanism allows cells to reduce the intracellular levels of the mutagenically active Umu proteins and thereby return to a resting state once error-prone DNA repair has occurred. The apparent half-life of the heterodimeric UmuD/D' complex is greatly increased in the clpX::Kan and clpP::Kan strains and these strains are correspondingly rendered virtually UV non-mutable. We believe that these phenotypes are consistent with the suggestion that while the UmuD/D' heterodimer is mutagenically inactive, it still retains the ability to interact with UmuC, and thereby precludes the formation of the mutagenically active UmuD'2C complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CcrM adenine DNA methyltransferase, which specifically modifies GANTC sequences, is necessary for viability in Caulobacter crescentus. To our knowledge, this is the first example of an essential prokaryotic DNA methyltransferase that is not part of a DNA restriction/modification system. Homologs of CcrM are widespread in the alpha subdivision of the Proteobacteria, suggesting that methylation at GANTC sites may have important functions in other members of this diverse group as well. Temporal control of DNA methylation state has an important role in Caulobacter development, and we show that this organism utilizes an unusual mechanism for control of remethylation of newly replicated DNA. CcrM is synthesized de novo late in the cell cycle, coincident with full methylation of the chromosome, and is then subjected to proteolysis prior to cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid β peptide (Aβ), the principal proteinaceous component of amyloid plaques in brains of Alzheimer’s disease patients, is derived by proteolytic cleavage of the amyloid precursor protein (APP). Proteolytic cleavage of APP by a putative α-secretase within the Aβ sequence precludes the formation of the amyloidogenic peptides and leads to the release of soluble APPsα into the medium. By overexpression of a disintegrin and metalloprotease (ADAM), classified as ADAM 10, in HEK 293 cells, basal and protein kinase C-stimulated α-secretase activity was increased severalfold. The proteolytically activated form of ADAM 10 was localized by cell surface biotinylation in the plasma membrane, but the majority of the proenzyme was found in the Golgi. These results support the view that APP is cleaved both at the cell surface and along the secretory pathway. Endogenous α-secretase activity was inhibited by a dominant negative form of ADAM 10 with a point mutation in the zinc binding site. Studies with purified ADAM 10 and Aβ fragments confirm the correct α-secretase cleavage site and demonstrate a dependence on the substrate’s conformation. Our results provide evidence that ADAM 10 has α-secretase activity and many properties expected for the proteolytic processing of APP. Increases of its expression and activity might be beneficial for the treatment of Alzheimer’s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about plant circadian oscillators, in spite of how important they are to sessile plants, which require accurate timekeepers that enable the plants to respond to their environment. Previously, we identified a circadian clock-associated (CCA1) gene that encodes an Myb-related protein that is associated with phytochrome control and circadian regulation in plants. To understand the role CCA1 plays in phytochrome and circadian regulation, we have isolated an Arabidopsis line with a T DNA insertion that results in the loss of CCA1 RNA, of CCA1 protein, and of an Lhcb-promoter binding activity. This mutation affects the circadian expression of all four clock-controlled genes that we examined. The results show that, despite their similarity, CCA1 and LHY are only partially redundant. The lack of CCA1 also affects the phytochrome regulation of gene expression, suggesting that CCA1 has an additional role in a signal transduction pathway from light, possibly acting at the point of integration between phytochrome and the clock. Our results indicate that CCA1 is an important clock-associated protein involved in circadian regulation of gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic viruses can maintain latency in dividing cells as extrachromosomal nuclear plasmids. Segregation and nuclear retention of DNA is, therefore, a key issue in retaining copy number. The E2 enhancer protein of the papillomaviruses is required for viral DNA replication and transcription. Viral mutants that prevent phosphorylation of the bovine papillomavirus type 1 (BPV) E2 protein are transformation-defective, despite normal viral gene expression and replication function. Cell colonies harboring such mutants show sectoring of viral DNA and are unable to maintain the episome. We find that transforming viral DNA attaches to mitotic chromosomes, in contrast to the mutant genome encoding the E2 phosphorylation mutant. Second-site suppressor mutations were uncovered in both E1 and E2 genes that allow for transformation, maintenance, and chromosomal attachment. E2 protein was also found to colocalize to mitotic chromosomes, whereas the mutant did not, suggesting a direct role for E2 in viral attachment to chromosomes. Such viral hitch-hiking onto cellular chromosomes is likely to provide a general mechanism for maintaining nuclear plasmids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ClpA, a member of the Clp/Hsp100 family of ATPases, is a molecular chaperone and, in combination with a proteolytic component ClpP, participates in ATP-dependent proteolysis. We investigated the role of ClpA in protein degradation by ClpAP by dissociating the reaction into several discrete steps. In the assembly step, ClpA–ClpP–substrate complexes assemble either by ClpA–substrate complexes interacting with ClpP or by ClpA–ClpP complexes interacting with substrate; ClpP in the absence of ClpA is unable to bind substrates. Assembly requires ATP binding but not hydrolysis. We discovered that ClpA translocates substrates from their binding sites on ClpA to ClpP. The translocation step specifically requires ATP; nonhydrolyzable ATP analogs are ineffective. Only proteins that are degraded by ClpAP are translocated. Characterization of the degradation step showed that substrates can be degraded in a single round of ClpA–ClpP–substrate binding followed by ATP hydrolysis. The products generated are indistinguishable from steady-state products. Taken together, our results suggest that ClpA, through its interaction with both the substrate and ClpP, acts as a gatekeeper, actively translocating specific substrates into the proteolytic chamber of ClpP where degradation occurs. As multicomponent ATP-dependent proteases are widespread in nature and share structural similarities, these findings may provide a general mechanism for regulation of substrate import into the proteolytic chamber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SoxR is a transcription activator governing a cellular response to superoxide and nitric oxide in Escherichia coli. SoxR protein is a homodimer, and each monomer has a redox-active [2Fe–2S] cluster. Oxidation and reduction of the [2Fe–2S] clusters can reversibly activate and inactivate SoxR transcriptional activity. Here, we use electron paramagnetic resonance spectroscopy to follow the redox-switching process of SoxR protein in vivo. SoxR [2Fe–2S] clusters were in the fully reduced state during normal aerobic growth, but were completely oxidized after only 2-min aerobic exposure of the cells to superoxide-generating agents such as paraquat. The oxidized SoxR [2Fe–2S] clusters were rapidly re-reduced in vivo once the oxidative stress was removed. The in vivo kinetics of SoxR [2Fe–2S] cluster oxidation and reduction exactly paralleled the increase and decrease of transcription of soxS, the target gene for SoxR. The kinetic analysis also revealed that an oxidative stress-linked decrease in soxS mRNA stability contributes to the rapid attainment of a new steady state after SoxR activation. Such a redox stress-related change in soxS mRNA stability may represent a new level of biological control.