11 resultados para Regeneration (Botany)
em National Center for Biotechnology Information - NCBI
Resumo:
The mechanisms that permit adult tissues to regenerate when injured are not well understood. Initiation of liver regeneration requires the injury-related cytokines, tumor necrosis factor (TNF) α and interleukin (IL) 6, and involves the activation of cytokine-regulated transcription factors such as NF-κβ and STAT3. During regeneration, TNFα and IL-6 promote hepatocyte viability, as well as proliferation, because interventions that inhibit either cytokine not only block hepatocyte DNA synthesis, but also increase liver cell death. These observations suggest that the cytokines induce hepatoprotective factors in the regenerating liver. Given evidence that nitric oxide can prevent TNF-mediated activation of the pro-apoptotic protease caspase 3 and protect hepatocytes from cytokine-mediated death, cytokine-inducible nitric oxide synthase (iNOS) may be an important hepatoprotective factor in the regenerating liver. In support of this hypothesis we report that the hepatocyte proliferative response to partial liver resection is severely inhibited in transgenic mice with targeted disruption of the iNOS gene. Instead, partial hepatectomy is followed by increased caspase 3 activity, hepatocyte death, and liver failure, despite preserved induction of TNFα, IL-6, NF-κβ, and STAT3. These results suggest that during successful tissue regeneration, injury-related cytokines induce factors, such as iNOS and its product, NO, that protect surviving cells from cytokine-mediated death.
Resumo:
A hair cell’s tip links are thought to gate mechanoelectrical transduction channels. The susceptibility of tip links to acoustic trauma raises questions as to whether these fragile structures can be regenerated. We broke tip links with the calcium chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid and found that they can regenerate, albeit imperfectly, over several hours. The time course of tip-link regeneration suggests that this process may underlie recovery from temporary threshold shifts induced by noise exposure. Cycloheximide does not block tip-link regeneration, indicating that new protein synthesis is not required. The calcium ionophore ionomycin prevents regeneration, suggesting regeneration normally may be stimulated by the reduction in stereociliary Ca2+ when gating springs rupture and transduction channels close. Supporting the equivalence of tip links with gating springs, mechanoelectrical transduction returns over the same time period as tip links; strikingly, adaptation is substantially reduced, even 24 hr after breaking tip links.
Resumo:
In urodele amphibians, lens induction during development and regeneration occurs through different pathways. During development, the lens is induced from the mutual interaction of the ectoderm and the optic vesicle, whereas after lentectomy the lens is regenerated through the transdifferentiation of the iris-pigmented epithelial cells. Given the known role of fibroblast growth factors (FGFs) during lens development, we examined whether or not the expression and the effects of exogenous FGF during urodele lens regeneration were conserved. In this paper, we describe expression of FGF-1 and its receptors, FGFR-2 (KGFR and bek variants) and FGFR-3, in newts during lens regeneration. Expression of these genes was readily observed in the dedifferentiating pigmented epithelial cells, and the levels of expression were high in the lens epithelium and the differentiating fibers and lower in the retina. These patterns of expression implied involvement of FGFs in lens regeneration. To further elucidate this function, we examined the effects of exogenous FGF-1 and FGF-4 during lens regeneration. FGF-1 or FGF-4 treatment in lentectomized eyes resulted in the induction of abnormalities reminiscent to the ones induced during lens development in transgenic mice. Effects included transformation of epithelial cells to fiber cells, double lens regeneration, and lenses with abnormal polarity. These results establish that FGF molecules are key factors in fiber differentiation, polarity, and morphogenesis of the lens during regeneration even though the regenerating lens is induced by a different mechanism than in lens development. In this sense, FGF function in lens regeneration and development should be regarded as conserved. Such conservation should help elucidate the mechanisms of lens regeneration in urodeles and its absence in higher vertebrates.
Resumo:
Postmitotic hair-cell regeneration in the inner ear of birds provides an opportunity to study the effect of renewed auditory input on auditory perception, vocal production, and vocal learning in a vertebrate. We used behavioral conditioning to test both perception and vocal production in a small Australian parrot, the budgerigar. Results show that both auditory perception and vocal production are disrupted when hair cells are damaged or lost but that these behaviors return to near normal over time. Precision in vocal production completely recovers well before recovery of full auditory function. These results may have particular relevance for understanding the relation between hearing loss and human speech production especially where there is consideration of an auditory prosthetic device. The present results show, at least for a bird, that even limited recovery of auditory input soon after deafening can support full recovery of vocal precision.
Resumo:
A decade ago it was discovered that mature birds are able to regenerate hair cells, the receptors for auditory perception. This surprising finding generated hope in the field of auditory neuroscience that new hair cells someday may be coaxed to form in another class of warm-blooded vertebrates, mammals. We have made considerable progress toward understanding some cellular and molecular events that lead to hair cell regeneration in birds. This review discusses our current understanding of avian hair cell regeneration, with some comparisons to other vertebrate classes and other regenerative systems.
Prostaglandins are required for CREB activation and cellular proliferation during liver regeneration
Resumo:
The liver responds to multiple types of injury with an extraordinarily well orchestrated and tightly regulated form of regeneration. The response to partial hepatectomy has been used as a model system to elucidate the molecular basis of this regenerative response. In this study, we used cyclooxygenase (COX)-selective antagonists and -null mice to determine the role of prostaglandin signaling in the response of liver to partial hepatectomy. The results show that liver regeneration is markedly impaired when both COX-1 and COX-2 are inhibited by indocin or by a combination of the COX-1 selective antagonist, SC-560, and the COX-2 selective antagonist, SC-236. Inhibition of COX-2 alone partially inhibits regeneration whereas inhibition of COX-1 alone tends to delay regeneration. Neither the rise in IL-6 nor the activation of signal transducer and activator of transcription-3 (STAT3) that is seen during liver regeneration is inhibited by indocin or the selective COX antagonists. In contrast, indocin treatment prevents the activation of CREB by phosphorylation that occurs during hepatic regeneration. These data indicate that prostaglandin signaling is required during liver regeneration, that COX-2 plays a particularly important role but COX-1 is also involved, and implicate the activation of CREB rather than STAT3 as the mediator of prostaglandin signaling during liver regeneration.
Resumo:
Neurite outgrowth across spinal cord lesions in vitro is rapid in preparations isolated from the neonatal opossum Monodelphis domestica up to the age of 12 days. At this age oligodendrocytes, myelin, and astrocytes develop and regeneration ceases to occur. The role of myelin-associated neurite growth-inhibitory proteins, which increase in concentration at 10-13 days, was investigated in culture by applying the antibody IN-1, which blocks their effects. In the presence of IN-1, 22 out of 39 preparations from animals aged 13-17 days showed clear outgrowth of processes into crushes. When 34 preparations from 13-day-old animals were crushed and cultured without antibody, no axons grew into the lesion. The success rate with IN-1 was comparable to that seen in younger animals but the outgrowth was less profuse. IN-1 was shown by immunocytochemistry to penetrate the spinal cord. Other antibodies which penetrated the 13-day cord failed to promote fiber outgrowth. To distinguish between regeneration by cut neurites and outgrowth by developing uncut neurites, fibers in the ventral fasciculus were prelabeled with carbocyanine dyes and subsequently injured. The presence of labeled fibers in the lesion indicated that IN-1 promoted regeneration. These results show that the development of myelin-associated growth-inhibitory proteins contributes to the loss of regeneration as the mammalian central nervous system matures. The definition of a critical period for regeneration, coupled with the ability to apply trophic as well as inhibitory molecules to the culture, can permit quantitative assessment of molecular interactions that promote spinal cord regeneration.
Resumo:
Using data derived from peptide sequencing of p68/70, a protein doublet induced during optic nerve regeneration in goldfish, we have isolated cDNAs that encode RICH (regeneration-induced CNPase homolog) from a goldfish regenerating retina cDNA library. The predicted RICH protein comprises 411 amino acids, possesses a pI of 4.48, and shows significant homology to the mammalian myelin marker enzyme 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase; EC 3.1.4.37). The mRNA encoding RICH was demonstrated, by both Northern blot analysis and RNase protection assays, to be induced as much as 8-fold in regenerating goldfish retinas at 20 days after nerve crush. Analysis of total RNA samples from various tissues showed a broad distribution of RICH mRNA, with the highest levels observed in gravid ovary. The data obtained strongly suggest that RICH is identical or very similar to p68/70. The molecular cloning of RICH provides the means for a more detailed analysis of its function in nerve regeneration. Additionally, the homology of RICH and CNPase suggests that further investigation may provide additional insight into the role of these proteins in the nervous system.
Resumo:
Cell differentiation, tissue formation, and organogenesis are fundamental patterns during the development of multicellular animals from the dividing cells of fertilized eggs. Hence, the complete morphogenesis of any developing organism of the animal kingdom is based on a complex series of interactions that is always associated with the development of a blastula, a one-layered hollow sphere. Here we document an alternative pathway of differentiation, organogenesis, and morphogenesis occurring in an adult protochordate colonial organism. In this system, any minute fragment of peripheral blood vessel containing a limited number of blood cells isolated from Botrylloides, a colonial sea squirt, has the potential to give rise to a fully functional organism possessing all three embryonic layers. Regeneration probably results from a small number of totipotent stem cells circulating in the blood system. The developmental process starts from disorganized, chaotic masses of blood cells. At first an opaque cell mass is formed. Through intensive cell divisions, a hollow, blastula-like structure results, which may produce a whole organism within a short period of a week. This regenerative power of the protochordates may be compared with some of the characteristics associated with the formation of mammalian embryonal carcinomous bodies. It may also serve as an in vivo model system for studying morphogenesis and differentiation by shedding more light on the controversy of the "stem cell" vs. the "dedifferentiation" theories of regeneration and pattern formation.
Resumo:
Retrovirus-mediated gene transfer into hepatocytes in vivo results in long-term gene expression. Limitations include the need to remove two-thirds of the liver and the relatively low frequency of gene transfer. To increase gene transfer without surgical hepatectomy, mouse hepatocytes were transduced in vivo with a recombinant adenovirus that transiently expressed urokinase, resulting in high rates of asynchronous liver regeneration. During the regenerative phase, in vivo retroviral-mediated gene transfer in hepatocytes resulted in 5- to 10-fold greater transduction efficiencies than that obtained by conventional partial hepatectomy. In 3-4 weeks, the architecture and microscopic structure of the recipient livers were normal. The two-viral system of achieving permanent transgene expression from hepatocytes in vivo offers an alternative approach to current ex vivo and in vivo gene-transfer models.
Resumo:
Regeneration of eye tissues, such as lens, seen in some urodeles involves dedifferentiation of the dorsal pigmented epithelium and subsequent differentiation to lens cells. Such spatial regulation implies possible action of genes known to be specific for particular cell lineages and/or axis. Hox genes have been the best examples of genes for such actions. We have, therefore, investigated the possibility that such genes are expressed during lens regeneration in the newt. The pax-6 gene (a gene that contains a homeobox and a paired box) has been implicated in the development of the eye and lens determination in various species ranging from Drosophila to human and, because of these properties, could be instrumental in the regeneration of the urodele eye tissues as well. We present data showing that pax-6 transcripts are present in the developing and the regenerating eye tissues. Furthermore, expression in eye tissues, such as in retina, declines when a urodele not capable of lens regeneration (axolotl) surpasses the embryonic stages. Such a decline is not seen in adult newts capable of lens regeneration. This might indicate a vital role of pax-6 in newt lens regeneration.