77 resultados para Refrigeration and refrigerating machinery

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The product of the herpes simplex virus type 1 UL28 gene is essential for cleavage of concatemeric viral DNA into genome-length units and packaging of this DNA into viral procapsids. To address the role of UL28 in this process, purified UL28 protein was assayed for the ability to recognize conserved herpesvirus DNA packaging sequences. We report that DNA fragments containing the pac1 DNA packaging motif can be induced by heat treatment to adopt novel DNA conformations that migrate faster than the corresponding duplex in nondenaturing gels. Surprisingly, these novel DNA structures are high-affinity substrates for UL28 protein binding, whereas double-stranded DNA of identical sequence composition is not recognized by UL28 protein. We demonstrate that only one strand of the pac1 motif is responsible for the formation of novel DNA structures that are bound tightly and specifically by UL28 protein. To determine the relevance of the observed UL28 protein–pac1 interaction to the cleavage and packaging process, we have analyzed the binding affinity of UL28 protein for pac1 mutants previously shown to be deficient in cleavage and packaging in vivo. Each of the pac1 mutants exhibited a decrease in DNA binding by UL28 protein that correlated directly with the reported reduction in cleavage and packaging efficiency, thereby supporting a role for the UL28 protein–pac1 interaction in vivo. These data therefore suggest that the formation of novel DNA structures by the pac1 motif confers added specificity on recognition of DNA packaging sequences by the UL28-encoded component of the herpesvirus cleavage and packaging machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic similarities and contrasts are investigated in a collection of 23 bacteriophages, including phages with temperate, lytic, and parasitic life histories, with varied sequence organizations and with different hosts and with different morphologies. Comparisons use relative abundances of di-, tri-, and tetranucleotides from entire genomes. We highlight several specific findings. (i) As previously shown for cellular genomes, each viral genome has a distinctive signature of short oligonucleotide abundances that pervade the entire genome and distinguish it from other genomes. (ii) The enteric temperate double-stranded (ds) phages, like enterobacteria, exhibit significantly high relative abundances of GpC = GC and significantly low values of TA, but no such extremes exist in ds lytic phages. (iii) The tetranucleotide CTAG is of statistically low relative abundance in most phages. (iv) The DAM methylase site GATC is of statistically low relative abundance in most phages, but not in P1. This difference may relate to controls on replication (e.g., actions of the host SeqA gene product) and to MutH cleavage potential of the Escherichia coli DAM mismatch repair system. (v) The enteric temperate dsDNA phages form a coherent group: they are relatively close to each other and to their bacteria] hosts in average differences of dinucleotide relative abundance values. By contrast, the lytic dsDNA phages do not form a coherent group. This difference may come about because the temperate phages acquire more sequence characteristics of the host because they use the host replication and repair machinery, whereas the analyzed lytic phages are replicated by their own machinery. (vi) The nonenteric temperate phages with mycoplasmal and mycobacterial hosts are relatively close to their respective hosts and relatively distant from any of the enteric hosts and from the other phages. (vii) The single-stranded RNA phages have dinucleotide relative abundance values closest to those for random sequences, presumably attributable to the mutation rates of RNA phages being much greater than those of DNA phages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90–125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90–125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2–15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈20 million years, rapid (≈5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material—otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aggregation stage of the life cycle of Dictyostelium discoideum is governed by the chemotactic response of individual amoebae to excitable waves of cAMP. We modeled this process through a recently introduced hybrid automata-continuum scheme and used computer simulation to unravel the role of specific components of this complex developmental process. Our results indicated an essential role for positive feedback between the cAMP signaling and the expression of the genes encoding the signal transduction and response machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntaxin family of integral membrane proteins are thought to function as receptors for transport vesicles, with different isoforms of this family localized to various membranes throughout the cell. The yeast Pep12 protein is a syntaxin homologue which may function in the trafficking of vesicles from the trans-Golgi network to the vacuole. We have isolated an Arabidopsis thaliana cDNA by functional complementation of a yeast pep12 mutant. The Arabidopsis cDNA (aPEP12) potentially encodes a 31-kDa protein which is homologous to yeast Pep12 and to other members of the syntaxin family, indicating that this protein may function in the docking or fusion of transport vesicles with the vacuolar membrane in plant cells. Northern blot analysis indicates that the mRNA is expressed in all tissues examined, although at a very low level in leaves. The mRNA is found in all cell types in roots and leaves, as shown by in situ hybridization experiments. The existence of plant homologues of proteins of the syntaxin family indicates that the basic vesicle docking and fusion machinery may be conserved in plants as it is in yeast and mammals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The MAL proteolipid is a nonglycosylated integral membrane protein found in glycolipid-enriched membrane microdomains. In polarized epithelial Madin-Darby canine kidney cells, MAL is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin. MAL is thus part of the integral machinery for glycolipid-enriched membrane–mediated apical transport. At steady state, MAL is predominantly located in perinuclear vesicles that probably arise from the trans-Golgi network (TGN). To act on membrane traffic and to prevent their accumulation in the target compartment, integral membrane elements of the protein-sorting machinery should be itinerant proteins that cycle between the donor and target compartments. To establish whether MAL is an itinerant protein, we engineered the last extracellular loop of MAL by insertion of sequences containing the FLAG epitope or with sequences containing residues that became O-glycosylated within the cells or that displayed biotinylatable groups. The ectopic expression of these modified MAL proteins allowed us to investigate the surface expression of MAL and its movement through different compartments after internalization with the use of a combination of assays, including surface biotinylation, surface binding of anti-FLAG antibodies, neuraminidase sensitivity, and drug treatments. Immunofluorescence and flow cytometric analyses indicated that, in addition to its Golgi localization, MAL was also expressed on the cell surface, from which it was rapidly internalized. This retrieval implies transport through the endosomal pathway and requires endosomal acidification, because it can be inhibited by drugs such as chloroquine, monensin, and NH4Cl. Resialylation experiments of surface MAL treated with neuraminidase indicated that ∼30% of the internalized MAL molecules were delivered to the TGN, probably to start a new cycle of cargo transport. Together, these observations suggest that, as predicted for integral membrane members of the late protein transport machinery, MAL is an itinerant protein cycling between the TGN and the plasma membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Mod5 protein catalyzes isopentenylation of A to i6A on tRNAs in the nucleus, cytosol, and mitochondria. The substrate for Mod5p, dimethylallyl pyrophosphate, is also a substrate for Erg20p that catalyzes an essential step in sterol biosynthesis. Changing the distribution of Mod5p so that less Mod5p is present in the cytosol decreases i6A on cytosolic tRNAs and alters tRNA-mediated nonsense suppression. We devised a colony color/growth assay to assess tRNA-mediated nonsense suppression and used it to search for genes, which, when overexpressed, affect nonsense suppression. We identified SAL6, TEF4, and YDL219w, all of which likely affect nonsense suppression via alteration of the protein synthesis machinery. We also identified ARC1, whose product interacts with aminoacyl synthetases. Interestingly, we identified ERG20. Midwestern analysis showed that yeast cells overproducing Erg20p have reduced levels of i6A on tRNAs. Thus, Erg20p appears to affect nonsense suppression by competing with Mod5p for substrate. Identification of ERG20 reveals that yeast have a limited pool of dimethylallyl pyrophosphate. It also demonstrates that disrupting the balance between enzymes that use dimethylallyl pyrophosphate as substrate affects translation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vacuolar protein aminopeptidase I (API) uses a novel cytoplasm-to-vacuole targeting (Cvt) pathway. Complementation analysis of yeast mutants defective for cytoplasm-to-vacuole protein targeting (cvt) and autophagy (apg) revealed seven overlapping complementation groups between these two sets of mutants. In addition, all 14 apg complementation groups are defective in the delivery of API to the vacuole. Similarly, the majority of nonoverlapping cvt complementation groups appear to be at least partially defective in autophagy. Kinetic analyses of protein delivery rates indicate that autophagic protein uptake is induced by nitrogen starvation, whereas Cvt is a constitutive biosynthetic pathway. However, the machinery governing Cvt is affected by nitrogen starvation as targeting defects resulting from API overexpression can be rescued by induction of autophagy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The regions surrounding the catalytic amino acids previously identified in a few "retaining" O-glycosyl hydrolases (EC 3.2.1) have been analyzed by hydrophobic cluster analysis and have been used to define sequence motifs. These motifs have been found in more than 150 glycosyl hydrolase sequences representing at least eight established protein families that act on a large variety of substrates. This allows the localization and the precise role of the catalytic residues (nucleophile and acid catalyst) to be predicted for each of these enzymes, including several lysosomal glycosidases. An identical arrangement of the catalytic nucleophile was also found for S-glycosyl hydrolases (myrosinases; EC 3.2.3.1) for which the acid catalyst is lacking. A (beta/alpha)8 barrel structure has been reported for two of the eight families of proteins that have been grouped. It is suggested that the six other families also share this fold at their catalytic domain. These enzymes illustrate how evolutionary events led to a wide diversification of substrate specificity with a similar disposition of identical catalytic residues onto the same ancestral (beta/alpha)8 barrel structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli and Salmonella typhimurium strains grown in Luria–Bertani medium containing glucose secrete a small soluble heat labile organic molecule that is involved in intercellular communication. The factor is not produced when the strains are grown in Luria–Bertani medium in the absence of glucose. Maximal secretion of the substance occurs in midexponential phase, and the extracellular activity is degraded as the glucose is depleted from the medium or by the onset of stationary phase. Destruction of the signaling molecule in stationary phase indicates that, in contrast to other quorum-sensing systems, quorum sensing in E. coli and S. typhimurium is critical for regulating behavior in the prestationary phase of growth. Our results further suggest that the signaling factor produced by E. coli and S. typhimurium is used to communicate both the cell density and the metabolic potential of the environment. Several laboratory and clinical strains of E. coli and S. typhimurium were screened for production of the signaling molecule, and most strains make it under conditions similar to those shown here for E. coli AB1157 and S. typhimurium LT2. However, we also show that E. coli strain DH5α does not make the soluble factor, indicating that this highly domesticated strain has lost the gene(s) or biosynthetic machinery necessary to produce the signaling substance. Implications for the involvement of quorum sensing in pathogenesis are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hippocampal neurons, neurotransmitter release can be regulated by protein kinase A (PKA) through a direct action on the secretory machinery. To identify the site of PKA modulation, we have taken advantage of the ability of the neurotoxin Botulinum A to cleave the synaptic protein SNAP-25. Cleavage of this protein decreases the Ca2+ responsiveness of the secretory machinery by partially uncoupling Ca2+-sensing from fusion per se. This is expressed as a shift toward higher Ca2+ levels of the Ca2+ to neurotransmitter release relationship and as a perturbation of synaptic delay under conditions where secretion induced by the Ca2+-independent secretagogue ruthenium red is unimpaired. We find that SNAP-25 cleavage also perturbs PKA-dependent modulation of secretion; facilitation of ruthenium red-evoked neurotransmitter release by the adenylyl cyclase activator forskolin is blocked completely after Botulinum toxin A action. Together with our observation that forskolin modifies the Ca2+ to neurotransmitter release relationship, our results suggest that SNAP-25 acts as a functional linker between Ca2+ detection and fusion and that PKA modulates an early step in the secretory machinery related to calcium sensing to facilitate synaptic transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcriptional activity of an in vitro assembled human interferon-β gene enhanceosome is highly synergistic. This synergy requires five distinct transcriptional activator proteins (ATF2/c-JUN, interferon regulatory factor 1, and p50/p65 of NF-κB), the high mobility group protein HMG I(Y), and the correct alignment of protein-binding sites on the face of the DNA double helix. Here, we investigate the mechanisms of enhanceosome-dependent transcriptional synergy during preinitiation complex assembly in vitro. We show that the stereospecific assembly of the enhanceosome is critical for the efficient recruitment of TFIIB into a template-committed TFIID-TFIIA-USA (upstream stimulatory activity complex) and for the subsequent recruitment of the RNA polymerase II holoenzyme complex. In addition, we provide evidence that recruitment of the holoenzyme by the enhanceosome is due, at least in part, to interactions between the enhanceosome and the transcriptional coactivator CREB, cAMP responsive element binding protein (CBP). These studies reveal a unique role of enhanceosomes in the cooperative assembly of the transcription machinery on the human interferon-β promoter.