4 resultados para Reflex, Startle

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moderate somatic stress inhibits gastric acid secretion. We have investigated the role of endogenously released NO in this phenomenon. Elevation of body temperature by 3°C or a reduction of 35 mmHg (1 mmHg = 133 Pa) in blood pressure for 10 min produced a rapid and long-lasting reduction of distension-stimulated acid secretion in the rat perfused stomach in vivo. A similar inhibitory effect on acid secretion was produced by the intracisternal (i.c.) administration of oxytocin, a peptide known to be released during stress. Intracisternal administration of the NO-synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME) reversed the antisecretory effect induced by all these stimuli, an action prevented by intracisternal coadministration of the NO precursor, l-arginine. Furthermore, microinjection of l-NAME into the dorsal motor nucleus of the vagus nerve reversed the acid inhibitory effects of mild hyperthermia, i.v. endotoxin, or i.c. oxytocin, an action prevented by prior microinjection of l-arginine. By contrast, microinjection of l-NAME into the nucleus tractus solitarius failed to affect the inhibitory effects of hyperthermia, i.v. endotoxin, or i.c. oxytocin. Immunohistochemical techniques demonstrated that following hyperthermia there was a significant increase in immunoreactivity to neuronal NO synthase in different areas of the brain, including the dorsal motor nucleus of the vagus. Thus, our results suggest that the inhibition of gastric acid secretion, a defense mechanism during stress, is mediated by a nervous reflex involving a neuronal pathway that includes NO synthesis in the brain, specifically in the dorsal motor nucleus of the vagus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophins can directly modulate the function of diverse types of central nervous system synapses. Brain-derived neurotrophic factor (BDNF) might be released by nociceptors onto spinal neurons and mediate central sensitization associated with chronic pain. We have studied the role of BDNF and neurotrophin-4 (NT-4), both ligands of the trkB tyrosine kinase receptor, in synaptic transmission and reflex plasticity in the mouse spinal cord. We used an in vitro spinal cord preparation to measure monosynaptic and polysynaptic reflexes evoked by primary afferents in BDNF- and NT-4-deficient mice. In situ hybridization studies show that both these neurotrophins are synthesized by sensory neurons, and NT-4, but not BDNF, also is expressed by spinal neurons. BDNF null mutants display selective deficits in the ventral root potential (VRP) evoked by stimulating nociceptive primary afferents whereas the non-nociceptive portion of the VRP remained unaltered. In addition, activity-dependent plasticity of the VRP evoked by repetitive (1 Hz) stimulation of nociceptive primary afferents (termed wind-up) was substantially reduced in BDNF-deficient mice. This plasticity also was reduced in a reversible manner by the protein kinase inhibitor K252a. Although the trkB ligand NT-4 is normally present, reflex properties in NT-4 null mutant mice were normal. Pharmacological studies also indicated that spinal N-methyl-d-aspartate receptor function was unaltered in BDNF-deficient mice. Using immunocytochemistry for markers of nociceptive neurons we found no evidence that their number or connectivity was substantially altered in BDNF-deficient mice. Our data therefore are consistent with a direct role for presynaptic BDNF release from sensory neurons in the modulation of pain-related neurotransmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operant conditioning of the primate triceps surae H-reflex, the electrical analog of the spinal stretch reflex, creates a memory trace that includes changes in the spinal cord. To define the morphological correlates of this plasticity, we analyzed the synaptic terminal coverage of triceps surae motoneurons from animals in which the triceps surae H-reflex in one leg had been increased (HRup mode) or decreased (HRdown mode) by conditioning and compared them to each other and to motoneurons from unconditioned animals. Motoneurons were labeled by intramuscular injection of cholera toxin-horseradish peroxidase. A total of 5055 terminals on the cell bodies and proximal dendrites of 114 motoneurons from 14 animals were studied by electron microscopy. Significant differences were found between HRup and HRdown animals and between HRup and naive (i.e., unconditioned) animals. F terminals (i.e., putative inhibitory terminals) were smaller and their active zone coverage on the cell body was lower on motoneurons from the conditioned side of HRup animals than on motoneurons from the conditioned side of HRdown animals. C terminals (i.e., terminals associated with postsynaptic cisterns and rough endoplasmic reticulum) were smaller and the number of C terminals in each C complex (i.e., a group of contiguous C terminals) was larger on motoneurons from the conditioned side of HRup animals than on motoneurons either from the conditioned side of HRdown animals or from naive animals. Because the treatment of HRup and HRdown animals differed only in the reward contingency, the results imply that the two contingencies had different effects on motoneuron synaptic terminals. In combination with other recent data, they show that H-reflex conditioning produces a complex pattern of spinal cord plasticity that includes changes in motoneuron physiological properties as well as in synaptic terminals. Further delineation of this pattern should reveal the contribution of the structural changes described here to the learned change in behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning is widely thought to result from altered potency of synapses within the neural pathways that mediate the learned behavior. Support for this belief, which pervades current physiological and computational thinking, comes especially from the analysis of cases of simple learning in invertebrates. Here, evidence is presented that in one such case, habituation of crayfish escape, the learning is more due to onset of tonic descending inhibition than to the intrinsic depression of circuit synapses to which it was previously attributed. Thus, the altered performance seems to depend at least as much on events in higher centers as on local plasticity.