5 resultados para Recursive logit

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise classification of tumors is critically important for cancer diagnosis and treatment. It is also a scientifically challenging task. Recently, efforts have been made to use gene expression profiles to improve the precision of classification, with limited success. Using a published data set for purposes of comparison, we introduce a methodology based on classification trees and demonstrate that it is significantly more accurate for discriminating among distinct colon cancer tissues than other statistical approaches used heretofore. In addition, competing classification trees are displayed, which suggest that different genes may coregulate colon cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A critical requirement for integration of retroviruses, other than HIV and possibly related lentiviruses, is the breakdown of the nuclear envelope during mitosis. Nuclear envelope breakdown occurs during mitotic M-phase, the envelope reforming immediately after cell division, thereby permitting the translocation of the retroviral preintegration complex into the nucleus and enabling integration to proceed. In the oocyte, during metaphase II (MII) of the second meiosis, the nuclear envelope is also absent and the oocyte remains in MII arrest for a much longer period of time compared with M-phase in a somatic cell. Pseudotyped replication-defective retroviral vector was injected into the perivitelline space of bovine oocytes during MII. We show that reverse-transcribed gene transfer can take place in an oocyte in MII arrest of meiosis, leading to production of offspring, the majority of which are transgenic. We discuss the implications of this mechanism both as a means of production of transgenic livestock and as a model for naturally occurring recursive transgenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A concept termed liquid-phase combinatorial synthesis (LPCS) is described. The central feature of this methodology is that it combines the advantages that classic organic synthesis in solution offers with those that solid-phase synthesis can provide, through the application of a linear homogeneous polymer. To validate this concept two libraries were prepared, one of peptide and the second of nonpeptide origin. The peptide-based library was synthesized by a recursive deconvolution strategy [Erb, E., Janda, K. D. & Brenner, S. (1994) Proc. Natl. Acad. Sci. USA 91, 11422-11426] and several ligands were found within this library to bind a monoclonal antibody elicited against beta-endorphin. The non-peptide molecules synthesized were arylsulfonamides, a class of compounds of known clinical bactericidal efficacy. The results indicate that the reaction scope of LPCS should be general, and its value to multiple, high-throughput screening assays could be of particular merit, since multimilligram quantities of each library member can readily be attained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using taxonomic characters derived from EcoRI restriction endonuclease digestion of genomic DNA and hybridization with a labeled rRNA operon from Escherichia coli, a polymorphic structure of Listeria monocytogenes, characterized by fragments with different frequencies of occurrence, was observed. This structure was expanded by creating predicted patterns through a recursive process of observation, expectation, prediction, and assessment of completeness. This process was applied, in turn, to normalized strain patterns, fragment bands, and positions of EcoRI recognition sites relative to rRNA regions. Analysis of 1346 strains provided observed patterns, fragment sizes, and their frequencies of occurrence in the patterns. Fragment size statistics led to the creation of unobserved combinations of bands, predicted pattern types. The observed fragment bands revealed positions of EcoRI sites relative to rRNA sequences. Each EcoRI site had a frequency of occurrence, and unobserved fragment sizes were postulated on the basis of knowing the restriction site locations. The result of the recursion process applied to the components of the strain data was an extended classification with observed and predicted members.