21 resultados para Recruitment consultancy

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcriptional activity of an in vitro assembled human interferon-β gene enhanceosome is highly synergistic. This synergy requires five distinct transcriptional activator proteins (ATF2/c-JUN, interferon regulatory factor 1, and p50/p65 of NF-κB), the high mobility group protein HMG I(Y), and the correct alignment of protein-binding sites on the face of the DNA double helix. Here, we investigate the mechanisms of enhanceosome-dependent transcriptional synergy during preinitiation complex assembly in vitro. We show that the stereospecific assembly of the enhanceosome is critical for the efficient recruitment of TFIIB into a template-committed TFIID-TFIIA-USA (upstream stimulatory activity complex) and for the subsequent recruitment of the RNA polymerase II holoenzyme complex. In addition, we provide evidence that recruitment of the holoenzyme by the enhanceosome is due, at least in part, to interactions between the enhanceosome and the transcriptional coactivator CREB, cAMP responsive element binding protein (CBP). These studies reveal a unique role of enhanceosomes in the cooperative assembly of the transcription machinery on the human interferon-β promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proinflammatory cytokine interleukin 1 (IL-1) activates the transcription of many genes encoding acute phase and proinflammatory proteins, a function mediated primarily by the transcription factor NF-κB. An early IL-1 signaling event is the recruitment of the Ser/Thr kinase IRAK to the type I IL-1 receptor (IL-1RI). Here we describe the function of a previously identified IL-1 receptor subunit designated IL-1 receptor accessory protein (IL-1RAcP). IL-1 treatment of cells induces the formation of a complex containing both IL-1RI and IL-1RAcP. IRAK is recruited to this complex through its association with IL-1RAcP. Overexpression of an IL-1RAcP mutant lacking its intracellular domain, the IRAK-binding domain, prevented the recruitment of IRAK to the receptor complex and blocked IL-1-induced NF-κB activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptides are slowly released from a limited pool of secretory vesicles. Despite decades of research, the composition of this pool has remained unknown. Endocrine cell studies support the hypothesis that a population of docked vesicles supports the first minutes of hormone release. However, it has been proposed that mobile cytoplasmic vesicles dominate the releasable neuropeptide pool. Here, to determine the cellular basis of the releasable pool, single green fluorescent protein-labeled secretory vesicles were visualized in neuronal growth cones with the use of an inducible construct or total internal reflection fluorescence microscopy. We report that vesicle movement follows the diffusion equation. Furthermore, rapidly moving secretory vesicles are used more efficiently than stationary vesicles near the plasma membrane to support stimulated release. Thus, randomly moving cytoplasmic vesicles participate in the first minutes of neuropeptide release. Importantly, the preferential recruitment of diffusing cytoplasmic secretory vesicles contributes to the characteristic slow kinetics and limited extent of sustained neuropeptide release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypermethylated in cancer (HIC-1), a new candidate tumor suppressor gene located in 17p13.3, encodes a protein with five C2H2 zinc fingers and an N-terminal broad complex, tramtrack, and bric à brac/poxviruses and zinc-finger (BTB/POZ) domain found in actin binding proteins or transcriptional regulators involved in chromatin modeling. In the human B cell lymphoma (BCL-6) and promyelocityc leukemia (PLZF) oncoproteins, this domain mediates transcriptional repression through its ability to recruit a silencing mediator of retinoid and thyroid hormone receptor (SMRT)/nuclear receptor corepressor (N-CoR)-mSin3A-histone deacetylase (HDAC) complex, a mechanism shared with numerous transcription factors. HIC-1 appears unique because it contains a 13-aa insertion acquired late in evolution, because it is not found in its avian homologue, γF1-binding protein isoform B (γFBP-B), a transcriptional repressor of the γF-crystallin gene. This insertion, located in a conserved region involved in the dimerization and scaffolding of the BTB/POZ domain, mainly affects slightly the ability of the HIC-1 and γFBP-B BTB/POZ domains to homo- and heterodimerize in vivo, as shown by mammalian two-hybrid experiments. Both the HIC-1 and γFBP-B BTB/POZ domains behave as autonomous transcriptional repression domains. However, in striking contrast with BCL-6 and PLZF, both HIC-1 and γFBP-B similarly fail to interact with members of the HDAC complexes (SMRT/N-CoR, mSin3A or HDAC-1) in vivo and in vitro. In addition, a general and specific inhibitor of HDACs, trichostatin A, did not alleviate the HIC-1- and γFBP-B-mediated transcriptional repression, as previously shown for BCL-6. Taken together, our studies show that the recruitment onto target promoters of an HDAC complex is not a general property of transcriptional repressors containing a conserved BTB/POZ domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polo kinases execute multiple roles during cell division. The fission yeast polo related kinase Plo1 is required to assemble the mitotic spindle, the prophase actin ring that predicts the site for cytokinesis and for septation after the completion of mitosis (Ohkura et al., 1995; Bahler et al., 1998). We show that Plo1 associates with the mitotic but not interphase spindle pole body (SPB). SPB association of Plo1 is the earliest fission yeast mitotic event recorded to date. SPB association is strong from mitotic commitment to early anaphase B, after which the Plo1 signal becomes very weak and finally disappears upon spindle breakdown. SPB association of Plo1 requires mitosis-promoting factor (MPF) activity, whereas its disassociation requires the activity of the anaphase-promoting complex. The stf1.1 mutation bypasses the usual requirement for the MPF activator Cdc25 (Hudson et al., 1990). Significantly, Plo1 associates inappropriately with the interphase SPB of stf1.1 cells. These data are consistent with the emerging theme from many systems that polo kinases participate in the regulation of MPF to determine the timing of commitment to mitosis and may indicate that pole association is a key aspect of Plo1 function. Plo1 does not associate with the SPB when septation is inappropriately driven by deregulation of the Spg1 pathway and remains SPB associated if septation occurs in the presence of a spindle. Thus, neither Plo1 recruitment to nor its departure from the SPB are required for septation; however, overexpression of plo1+ activates the Spg1 pathway and causes transient Cdc7 recruitment to the SPB and multiple rounds of septation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP–labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 μm/min with a maximum velocity of 24.3 μm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviral Gag polyproteins have specific regions, commonly referred to as late assembly (L) domains, which are required for the efficient separation of assembled virions from the host cell. The L domain of HIV-1 is in the C-terminal p6gag domain and contains an essential P(T/S)AP core motif that is widely conserved among lentiviruses. In contrast, the L domains of oncoretroviruses such as Rous sarcoma virus (RSV) have a more N-terminal location and a PPxY core motif. In the present study, we used chimeric Gag constructs to probe for L domain activity, and observed that the unrelated L domains of RSV and HIV-1 both induced the appearance of Gag-ubiquitin conjugates in virus-like particles (VLP). Furthermore, a single-amino acid substitution that abolished the activity of the RSV L domain in VLP release also abrogated its ability to induce Gag ubiquitination. Particularly robust Gag ubiquitination and enhancement of VLP release were observed in the presence of the candidate L domain of Ebola virus, which contains overlapping P(T/S)AP and PPxY motifs. The release defect of a minimal Gag construct could also be corrected through the attachment of a peptide that serves as a physiological docking site for the ubiquitin ligase Nedd4. Furthermore, VLP formation by a full-length Gag polyprotein was sensitive to lactacystin, which depletes the levels of free ubiquitin through inhibition of the proteasome. Our findings suggest that the engagement of the ubiquitin conjugation machinery by L domains plays a crucial role in the release of a diverse group of enveloped viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important question in the cell cycle field is how cyclin-dependent kinases (cdks) target their substrates. We have studied the role of a conserved hydrophobic patch on the surface of cyclin A in substrate recognition by cyclin A-cdk2. This hydrophobic patch is ≈35Å away from the active site of cdk2 and contains the MRAIL sequence conserved among a number of mammalian cyclins. In the x-ray structure of cyclin A-cdk2-p27, this hydrophobic patch contacts the RNLFG sequence in p27 that is common to a number of substrates and inhibitors of mammalian cdks. We find that mutation of this hydrophobic patch on cyclin A eliminates binding to proteins containing RXL motifs without affecting binding to cdk2. This docking site is critical for cyclin A-cdk2 phosphorylation of substrates containing RXL motifs, but not for phosphorylation of histone H1. Impaired substrate binding by the cyclin is the cause of the defect in RXL substrate phosphorylation, because phosphorylation can be rescued by restoring a cyclin A–substrate interaction in a heterologous manner. In addition, the conserved hydrophobic patch is important for cyclin A function in cells, contributing to cyclin A’s ability to drive cells out of the G1 phase of the cell cycle. Thus, we define a mechanism by which cyclins can recruit substrates to cdks, and our results support the notion that a high local concentration of substrate provided by a protein–protein interaction distant from the active site is critical for phosphorylation by cdks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor E2F plays a major role in cell cycle control in mammalian cells. E2F binding sites, which are present in the promoters of a variety of genes required for S phase, shift from a negative to a positive role in transcription at the commitment point, a crucial point in G1 that precedes the G1/S transition. Before the commitment point, E2F activity is repressed by members of the pocket proteins family. This repression is believed to be crucial for the proper control of cell growth. We have previously shown that Rb, the founding member of the pocket proteins family, represses E2F1 activity by recruiting the histone deacetylase HDAC1. Here, we show that the two other members of the pocket proteins family, p107 and p130, also are able to interact physically with HDAC1 in live cells. HDAC1 interacts with p107 and Rb through an “LXCXE”-like motif, similar to that used by viral transforming proteins to bind and inactivate pocket proteins. Indeed, we find that the viral transforming protein E1A competes with HDAC1 for p107 interaction. We also demonstrate that p107 is able to interact simultaneously with HDAC1 and E2F4, suggesting a model in which p107 recruits HDAC1 to repress E2F sites. Indeed, we demonstrate that histone deacetylase activity is involved in the p107- or p130-induced repression of E2F4. Taken together, our data suggest that all members of the E2F family are regulated in early G1 by similar complexes, containing a pocket protein and the histone deacetylase HDAC1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulation of endothelial cells by various inflammatory mediators leads to release of Weibel–Palade bodies and therefore to exocytosis of both P-selectin (adhesion receptor for leukocytes) and von Willebrand factor (vWf) (platelet ligand). The potential role of vWf in leukocyte recruitment was investigated with the use of vWf-deficient mice. We report a strong reduction of leukocyte rolling in venules of vWf-deficient mice. Similarly, vWf deficiency led to a decrease in neutrophil recruitment in a cytokine-induced meningitis model as well as in early skin wounds. In all instances with an antibody that preferentially recognizes plasma membrane P-selectin, we observed a dramatic reduction in P-selectin expression at the cell surface of vWf-deficient endothelium. With confocal microscopy, we found that the typical rodlike shape of the Weibel–Palade body is missing in vWf −/− endothelial cells and that part of the P-selectin content in the vWf −/− cells colocalized with LAMP-1, a lysosomal marker. However, intracellular P-selectin levels were similar in tumor necrosis factor α- and lipopolysaccharide-activated cells of both genotypes. We conclude that the absence of vWf, as found in severe von Willebrand disease, leads to a defect in Weibel–Palade body formation. This defect results in decreased P-selectin translocation to the cell surface and reduced leukocyte recruitment in early phases of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The docking protein FRS2 is a major downstream effector that links fibroblast growth factor (FGF) and nerve growth factor receptors with the Ras/mitogen-activated protein kinase signaling cascade. In this report, we demonstrate that FRS2 also plays a pivotal role in FGF-induced recruitment and activation of phosphatidylinositol 3-kinase (PI3-kinase). We demonstrate that tyrosine phosphorylation of FRS2α leads to Grb2-mediated complex formation with the docking protein Gab1 and its tyrosine phosphorylation, resulting in the recruitment and activation of PI3-kinase. Furthermore, Grb2 bound to tyrosine-phosphorylated FRS2 through its SH2 domain interacts primarily via its carboxyl-terminal SH3 domain with a proline-rich region in Gab1 and via its amino-terminal SH3 domain with the nucleotide exchange factor Sos1. Assembly of FRS2α:Grb2:Gab1 complex induced by FGF stimulation results in activation of PI3-kinase and downstream effector proteins such as the S/T kinase Akt, whose cellular localization and activity are regulated by products of PI3-kinase. These experiments reveal a unique mechanism for generation of signal diversity by growth factor-induced coordinated assembly of a multidocking protein complex that can activate the Ras/mitogen-activated protein kinase cascade to induce cell proliferation and differentiation, and PI3-kinase to activate a mediator of a cell survival pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZO-1 is an actin filament (F-actin)–binding protein that localizes to tight junctions and connects claudin to the actin cytoskeleton in epithelial cells. In nonepithelial cells that have no tight junctions, ZO-1 localizes to adherens junctions (AJs) and may connect cadherin to the actin cytoskeleton indirectly through β- and α-catenins as one of many F-actin–binding proteins. Nectin is an immunoglobulin-like adhesion molecule that localizes to AJs and is associated with the actin cytoskeleton through afadin, an F-actin–binding protein. Ponsin is an afadin- and vinculin-binding protein that also localizes to AJs. The nectin-afadin complex has a potency to recruit the E-cadherin–β-catenin complex through α-catenin in a manner independent of ponsin. By the use of cadherin-deficient L cell lines stably expressing various components of the cadherin-catenin and nectin-afadin systems, and α-catenin–deficient F9 cell lines, we examined here whether nectin recruits ZO-1 to nectin-based cell-cell adhesion sites. Nectin showed a potency to recruit not only α-catenin but also ZO-1 to nectin-based cell-cell adhesion sites. This recruitment of ZO-1 was dependent on afadin but independent of α-catenin and ponsin. These results indicate that ZO-1 localizes to cadherin-based AJs through interactions not only with α-catenin but also with the nectin-afadin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.