18 resultados para Recovery and Response

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouse p53 protein generated by alternative splicing (p53as) has amino acid substitutions at its C terminus that result in constitutively active sequence-specific DNA binding (active form), whereas p53 protein itself binds inefficiently (latent form) unless activated by C-terminal modification. Exogenous p53as expression activated transcription of reporter plasmids containing p53 binding sequences and inhibited growth of mouse and human cells lacking functional endogenous p53. Inducible p53as in stably transfected p53 null fibroblasts increased p21WAF1/Cip-1/Sdi and decreased bcl-2 protein steady-state levels. Endogenous p53as and p53 proteins differed in response to cellular DNA damage. p53 protein was induced transiently in normal keratinocytes and fibroblasts whereas p53as protein accumulation was sustained in parallel with induction of p21WAF1/Cip-1/Sdi protein and mRNA, in support of p53as transcriptional activity. Endogenous p53 and p53as proteins in epidermal tumor cells responded to DNA damage with different kinetics of nuclear accumulation and efficiencies of binding to a p53 consensus DNA sequence. A model is proposed in which C-terminally distinct p53 protein forms specialize in functions, with latent p53 forms primarily for rapid non-sequence-specific binding to sites of DNA damage and active p53 forms for sustained regulation of transcription and growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cross-maze task that can be acquired through either place or response learning was used to examine the hypothesis that posttraining neurochemical manipulation of the hippocampus or caudate-putamen can bias an animal toward the use of a specific memory system. Male Long-Evans rats received four trials per day for 7 days, a probe trial on day 8, further training on days 9–15, and an additional probe trial on day 16. Training occurred in a cross-maze task in which rats started from a consistent start-box (south), and obtained food from a consistent goal-arm (west). On days 4–6 of training, rats received posttraining intrahippocampal (1 μg/0.5 μl) or intracaudate (2 μg/0.5 μl) injections of either glutamate or saline (0.5 μl). On days 8 and 16, a probe trial was given in which rats were placed in a novel start-box (north). Rats selecting the west goal-arm were designated “place” learners, and those selecting the east goal-arm were designated “response” learners. Saline-treated rats predominantly displayed place learning on day 8 and response learning on day 16, indicating a shift in control of learned behavior with extended training. Rats receiving intrahippocampal injections of glutamate predominantly displayed place learning on days 8 and 16, indicating that manipulation of the hippocampus produced a blockade of the shift to response learning. Rats receiving intracaudate injections of glutamate displayed response learning on days 8 and 16, indicating an accelerated shift to response learning. The findings suggest that posttraining intracerebral glutamate infusions can (i) modulate the distinct memory processes mediated by the hippocampus and caudate-putamen and (ii) bias the brain toward the use of a specific memory system to control learned behavior and thereby influence the timing of the switch from the use of cognitive memory to habit learning to guide behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed and characterized a system to analyze light effects on auxin transport independent of photosynthetic effects. Polar transport of [3H]indole-3-acetic acid through hypocotyl segments from etiolated cucumber (Cucumis sativus L.) seedlings was increased in seedlings grown in dim-red light (DRL) (0.5 μmol m−2 s−1) relative to seedlings grown in darkness. Both transport velocity and transport intensity (export rate) were increased by at least a factor of 2. Tissue formed in DRL completely acquired the higher transport capacity within 50 h, but tissue already differentiated in darkness acquired only a partial increase in transport capacity within 50 h of DRL, indicating a developmental window for light induction of commitment to changes in auxin transport. This light-induced change probably manifests itself by alteration of function of the auxin efflux carrier, as revealed using specific transport inhibitors. Relative to dark controls, DRL-grown seedlings were differentially less sensitive to two inhibitors of polar auxin transport, N-(naphth-1-yl) phthalamic acid and 2,3,5-triiodobenzoic acid. On the basis of these data, we propose that the auxin efflux carrier is a key target of light regulation during photomorphogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jasmonic acid (JA) is a naturally occurring growth regulator found in higher plants. Several physiological roles have been described for this compound (or a related compound, methyl jasmonate) during plant development and in response to biotic and abiotic stress. To accurately determine JA levels in plant tissue, we have synthesized JA containing 13C for use as an internal standard with an isotopic composition of [225]:[224] 0.98:0.02 compared with [225]:[224] 0.15:0.85 for natural material. GC analysis (flame ionization detection and MS) indicate that the internal standard is composed of 92% 2-(+/-)-[13C]JA and 8% 2-(+/-)-7-iso-[13C]JA. In soybean plants, JA levels were highest in young leaves, flowers, and fruit (highest in the pericarp). In soybean seeds and seedlings, JA levels were highest in the youngest organs including the hypocotyl hook, plumule, and 12-h axis. In soybean leaves that had been dehydrated to cause a 15% decrease in fresh weight, JA levels increased approximately 5-fold within 2 h and declined to approximately control levels by 4 h. In contrast, a lag time of 1-2 h occurred before abscisic acid accumulation reached a maximum. These results will be discussed in the context of multiple pathways for JA biosynthesis and the role of JA in plant development and responses to environmental signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The function of the immune system is highly dependent on cellular differentiation and clonal expansion of antigen-specific lymphocytes. However, little is known about mechanisms that may have evolved to protect replicative potential in actively dividing lymphocytes during immune differentiation and response. Here we report an analysis of telomere length and telomerase expression, factors implicated in the regulation of cellular replicative lifespan, in human B cell subsets. In contrast to previous observations, in which telomere shortening and concomitant loss of replicative potential occur in the process of somatic cell differentiation and cell division, it was found that germinal center (GC) B cells, a compartment characterized by extensive clonal expansion and selection, had significantly longer telomeric restriction fragments than those of precursor naive B cells. Furthermore, it was found that telomerase, a telomere-synthesizing enzyme, is expressed at high levels in GC B cells (at least 128-fold higher than those of naive and memory B cells), correlating with the long telomeres in this subset of B cells. Finally, both naive and memory B cells were capable of up-regulating telomerase activity in vitro in response to activation signals through the B cell antigen receptor in the presence of CD40 engagement and/or interleukin 4. These observations suggest that a novel process of telomere lengthening, possibly mediated by telomerase, functions in actively dividing GC B lymphocytes and may play a critical role in humoral immune response by maintaining the replicative potential of GC and descendant memory B cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mainly based on various inhibitor studies previously performed, amidases came to be regarded as sulfhydryl enzymes. Not completely satisfied with this generally accepted interpretation, we performed a series of site-directed mutagenesis studies on one particular amidase of Rhodococcus rhodochrous J1 that was involved in its nitrile metabolism. For these experiments, the recombinant amidase was produced as the inclusion body in Escherichia coli to greatly facilitate its recovery and subsequent purification. With regard to the presumptive active site residue Cys203, a Cys203 → Ala mutant enzyme still retained 11.5% of the original specific activity. In sharp contrast, substitutions in certain other positions in the neighborhood of Cys203 had a far more dramatic effect on the amidase. Glutamic acid substitution of Asp191 reduced the specific activity of the mutant enzyme to 1.33% of the wild-type activity. Furthermore, Asp191 → Asn substitution as well as Ser195 → Ala substitution completely abolished the specific activity. It would thus appear that, among various conserved residues residing within the so-called signature sequence common to all amidases, the real active site residues are Asp191 and Ser195 rather than Cys203. Inasmuch as an amide bond (CO-NH2) in the amide substrate is not too far structurally removed from a peptide bond (CO-NH-), the signature sequences of various amidases were compared with the active site sequences of various types of proteases. It was found that aspartic acid and serine residues corresponding to Asp191 and Ser195 of the Rhodococcus amidase are present within the active site sequences of aspartic proteinases, thus suggesting the evolutionary relationship between the two.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Arabidopsis bas1-D mutation suppresses the long hypocotyl phenotype caused by mutations in the photoreceptor phytochrome B (phyB). The adult phenotype of bas1-D phyB-4 double mutants mimics that of brassinosteroid biosynthetic and response mutants. bas1-D phyB-4 has reduced levels of brassinosteroids and accumulates 26-hydroxybrassinolide in feeding experiments. The basis for the mutant phenotype is the enhanced expression of a cytochrome P450 (CYP72B1). bas1-D suppresses a phyB-null allele, but not a phyA-null mutation, and partially suppresses a cryptochrome-null mutation. Seedlings with reduced BAS1 expression are hyperresponsive to brassinosteroids in a light-dependent manner and display reduced sensitivity to light under a variety of conditions. Thus, BAS1 represents one of the control points between multiple photoreceptor systems and brassinosteroid signal transduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by growth retardation, cerebellar ataxia, oculocutaneous telangiectasias, and a high incidence of lymphomas and leukemias. In addition, AT patients are sensitive to ionizing radiation. Atm-deficient mice recapitulate most of the AT phenotype. p21cip1/waf1 (p21 hereafter), an inhibitor of cyclin-dependent kinases, has been implicated in cellular senescence and response to γ-radiation-induced DNA damage. To study the role of p21 in ATM-mediated signal transduction pathways, we examined the combined effect of the genetic loss of atm and p21 on growth control, radiation sensitivity, and tumorigenesis. As might have been expected, our data provide evidence that p21 modifies the in vitro senescent response seen in AT fibroblasts. Further, it is a downstream effector of ATM-mediated growth control. In addition, however, we find that loss of p21 in the context of an atm-deficient mouse leads to a delay in thymic lymphomagenesis and an increase in acute radiation sensitivity in vivo (the latter principally because of effects on the gut epithelium). Modification of these two crucial aspects of the ATM phenotype can be related to an apparent increase in spontaneous apoptosis seen in tumor cells and in the irradiated intestinal epithelium of mice doubly null for atm and p21. Thus, loss of p21 seems to contribute to tumor suppression by a mechanism that operates via a sensitized apoptotic response. These results have implications for cancer therapy in general and AT patients in particular.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two-component regulatory systems require highly specific interactions between histidine kinase (transmitter) and response regulator (receiver) proteins. We have developed a novel genetic strategy that is based on tightly regulated synthesis of a given protein to identify domains and residues of an interacting protein that are critical for interactions between them. Using a reporter strain synthesizing the nonpartner kinase VanS under tight arabinose control and carrying a promoter-lacZ fusion activated by phospho-PhoB, we isolated altered recognition (AR) mutants of PhoB showing enhanced activation (phosphorylation) by VanS as arabinose-dependent Lac+ mutants. Changes in the PhoBAR mutants cluster in a “patch” near the proposed helix 4 of PhoB based on the CheY crystal structure (a homolog of the PhoB receiver domain) providing further evidence that helix 4 lies in the kinase-regulator interface. Based on the CheY structure, one mutant has an additional change in a region that may propagate a conformational change to helix 4. The overall genetic strategy described here may also be useful for studying interactions of other components of the vancomycin resistance and Pi signal transduction pathways, other two-component regulatory systems, and other interacting proteins. Conditionally replicative oriRR6Kγ attP “genome targeting” suicide plasmids carrying mutagenized phoB coding regions were integrated into the chromosome of a reporter strain to create mutant libraries; plasmids encoding mutant PhoB proteins were subsequently retrieved by P1-Int-Xis cloning. Finally, the use of similar genome targeting plasmids and P1-Int-Xis cloning should be generally useful for constructing genomic libraries from a wide array of organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The human β2-adrenergic receptor gene has multiple single-nucleotide polymorphisms (SNPs), but the relevance of chromosomally phased SNPs (haplotypes) is not known. The phylogeny and the in vitro and in vivo consequences of variations in the 5′ upstream and ORF were delineated in a multiethnic reference population and an asthmatic cohort. Thirteen SNPs were found organized into 12 haplotypes out of the theoretically possible 8,192 combinations. Deep divergence in the distribution of some haplotypes was noted in Caucasian, African-American, Asian, and Hispanic-Latino ethnic groups with >20-fold differences among the frequencies of the four major haplotypes. The relevance of the five most common β2-adrenergic receptor haplotype pairs was determined in vivo by assessing the bronchodilator response to β agonist in asthmatics. Mean responses by haplotype pair varied by >2-fold, and response was significantly related to the haplotype pair (P = 0.007) but not to individual SNPs. Expression vectors representing two of the haplotypes differing at eight of the SNP loci and associated with divergent in vivo responsiveness to agonist were used to transfect HEK293 cells. β2-adrenergic receptor mRNA levels and receptor density in cells transfected with the haplotype associated with the greater physiologic response were ≈50% greater than those transfected with the lower response haplotype. The results indicate that the unique interactions of multiple SNPs within a haplotype ultimately can affect biologic and therapeutic phenotype and that individual SNPs may have poor predictive power as pharmacogenetic loci.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In myocardial ischemia, adrenergic nerves release excessive amounts of norepinephrine (NE), causing dysfunction and arrhythmias. With anoxia and the concomitant ATP depletion, vesicular storage of NE is impaired, resulting in accumulation of free NE in the axoplasm of sympathetic nerves. Intraneuronal acidosis activates the Na+/H+ exchanger (NHE), leading to increased Na+ entry in the nerve terminals. These conditions favor availability of the NE transporter to the axoplasmic side of the membrane, causing massive carrier-mediated efflux of free NE. Neuronal NHE activation is pivotal in this process; NHE inhibitors attenuate carrier-mediated NE release. We previously reported that activation of histamine H3 receptors (H3R) on cardiac sympathetic nerves also reduces carrier-mediated NE release and alleviates arrhythmias. Thus, H3R activation may be negatively coupled to NHE. We tested this hypothesis in individual human SKNMC neuroblastoma cells stably transfected with H3R cDNA, loaded with the intracellular pH (pHi) indicator BCECF. These cells possess amiloride-sensitive NHE. NHE activity was measured as the rate of Na+-dependent pHi recovery in response to an acute acid pulse (NH4Cl). We found that the selective H3R-agonist imetit markedly diminished NHE activity, and so did the amiloride derivative EIPA. The selective H3R antagonist thioperamide abolished the imetit-induced NHE attenuation. Thus, our results provide a link between H3R and NHE, which may limit the excessive release of NE during protracted myocardial ischemia. Our previous and present findings uncover a novel mechanism of cardioprotection: NHE inhibition in cardiac adrenergic neurons as a means to prevent ischemic arrhythmias associated with carrier-mediated NE release.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sinorhizobium fredii strain USDA191 forms N-fixing nodules on the soybean (Glycine max L. Merr.) cultivars (cvs) McCall and Peking, but S. fredii strain USDA257 nodulates only cv Peking. We wondered whether specificity in this system is conditioned by the release of unique flavonoid signals from one of the cultivars or by differential perception of signals by the strains. We isolated flavonoids and used nodC and nolX, which are nod-box-dependent and -independent nod genes, respectively, to determine how signals activate genes in the microsymbionts. Seeds of cv McCall and cv Peking contain the isoflavones daidzein, genistein, and glycitein, as well as their glucosyl and malonylglucosyl glycosides. Roots exude picomolar concentrations of daidzein, genistein, glycitein, and coumestrol. Amounts are generally higher in cv Peking than in cv McCall, and the presence of rhizobia markedly influences the level of specific signals. Nanomolar concentrations of daidzein, genistein, and coumestrol induce expression of nodC and nolX in strain USDA257, but the relative nolX-inducing activities of these signals differ in strain USDA191. Glycitein and the conjugates are inactive. Strain USDA257 deglycosylates daidzin and genistin into daidzein and genistein, respectively, thereby converting inactive precursors into active inducers. Although neither soybean cultivar contains unique nod-gene-inducing flavonoids, strain- and cultivar-specific interactions are characterized by distinct patterns of signal release and response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recovery of cell volume in response to osmotic stress is mediated in part by increases in the Cl- permeability of the plasma membrane. These studies evaluate the hypothesis that ATP release and autocrine stimulation of purinergic (P2) receptors couple increases in cell volume to opening of Cl- channels. In HTC rat hepatoma cells, swelling induced by hypotonic exposure increased membrane Cl- current density to 44.8 +/- 7.1 pA/pF at -80 mV. Both the rate of volume recovery and the increase in Cl- permeability were inhibited in the presence of the ATP hydrolase apyrase (3 units/ml) or by exposure to the P2 receptor blockers suramin and Reactive Blue 2 (10-100 microM). Cell swelling also stimulated release of ATP. Hypotonic exposure increased the concentration of ATP in the effluent of perfused cells by 170 +/- 36 nM in the presence of a nucleotidase inhibitor (P < 0.01). In whole-cell recordings with ATP as the charge carrier, cell swelling increased membrane current density approximately 30-fold to 16.5 +/- 10.4 pA/pF. These findings indicate that increases in cell volume lead to efflux of ATP through opening of a conductive pathway consistent with a channel, and that extracellular ATP is required for recovery from swelling. ATP may function as an autocrine factor that couples increases in cell volume to opening of Cl- channels through stimulation of P2 receptors.