2 resultados para Recoding

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The RECODE database is a compilation of ‘programmed’ translational recoding events taken from the scientific literature and personal communications. The database deals with programmed ribosomal frameshifting, codon redefinition and translational bypass occurring in a variety of organisms. The entries for each event include the sequences of the corresponding genes, their encoded proteins for both the normal and alternate decoding, the types of the recoding events involved, trans-factors and cis-elements that influence recoding. The database is freely available at http://recode.genetics.utah.edu/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The base following stop codons in mammalian genes is strongly biased, suggesting that it might be important for the termination event. This proposal has been tested experimentally both in vivo by using the human type I iodothyronine deiodinase mRNA and the recoding event at the internal UGA codon and in vitro by measuring the ability of each of the 12 possible 4-base stop signals to direct the eukaryotic polypeptide release factor to release a model peptide, formylmethionine, from the ribosome. The internal UGA in the deiodinase mRNA is used as a codon for incorporation of selenocysteine into the protein. Changing the base following this UGA codon affected the ratio of termination to selenocysteine incorporation in vivo at this codon: 1:3 (C or U) and 3:1 (A or G). These UGAN sequences have the same order of efficiency of termination as was found with the in vitro termination assay (4th base: A approximately G >> C approximately U). The efficiency of in vitro termination varied in the same manner over a 70-fold range for the UAAN series and over an 8-fold range for the UGAN and UAGN series. There is a correlation between the strength of the signals and how frequently they occur at natural termination sites. Together these data suggest that the base following the stop codon influences translational termination efficiency as part of a larger termination signal in the expression of mammalian genes.