5 resultados para Recent Publications of Note

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium falciparum is the agent of malignant malaria, one of mankind's most severe maladies. The parasite exhibits antigenic polymorphisms that have been postulated to be ancient. We have proposed that the extant world populations of P. falciparum have derived from one single parasite, a cenancestor, within the last 5,000–50,000 years. This inference derives from the virtual or complete absence of synonymous nucleotide polymorphisms at genes not involved in immune or drug responses. Seeking to conciliate this claim with extensive antigenic polymorphism, we first note that allele substitutions or polymorphisms can arise very rapidly, even in a single generation, in large populations subject to strong natural selection. Second, new alleles can arise not only by single-nucleotide mutations, but also by duplication/deletion of short simple-repeat DNA sequences, a process several orders of magnitude faster than single-nucleotide mutation. We analyze three antigenic genes known to be extremely polymorphic: Csp, Msp-1, and Msp-2. We identify regions consisting of tandem or proximally repetitive short DNA sequences, including some previously unnoticed. We conclude that the antigenic polymorphisms are consistent with the recent origin of the world populations of P. falciparum inferred from the analysis of nonantigenic genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA sequences of neutral nuclear autosomal loci, compared across diverse human populations, provide a previously untapped perspective into the mode and tempo of the emergence of modern humans and a critical comparison with published clonally inherited mitochondrial DNA and Y chromosome measurements of human diversity. We obtained over 55 kilobases of sequence from three autosomal loci encompassing Alu repeats for representatives of diverse human populations as well as orthologous sequences for other hominoid species at one of these loci. Nucleotide diversity was exceedingly low. Most individuals and populations were identical. Only a single nucleotide difference distinguished presumed ancestral alleles from descendants. These results differ from those expected if alleles from divergent archaic populations were maintained through multiregional continuity. The observed virtual lack of sequence polymorphism is the signature of a recent single origin for modern humans, with general replacement of archaic populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroplast DNA restriction-site variation was surveyed among 40 accessions representing all 11 species of giant senecios (Dendrosenecio, Asteraceae) at all but one known location, plus three outgroup species. Remarkably little variation (only 9 variable sites out of roughly 1000 sites examined) was found among the 40 giant senecio accessions, yet as a group they differ significantly (at 18 sites) from Cineraria deltoidea, the closest known relative. This pattern indicates that the giant senecios underwent a recent dramatic radiation in eastern Africa and evolved from a relatively isolated lineage within the Senecioneae. Biogeographic interpretation of the molecular phylogeny suggests that the giant senecios originated high on Mt. Kilimanjaro, with subsequent dispersion to the Aberdares, Mt. Kenya, and the Cherangani Hills, followed by dispersion westward to the Ruwenzori Mountains, and then south to the Virunga Mountains, Mt. Kahuzi, and Mt. Muhi, but with dispersion back to Mt. Elgon. Geographic radiation was an important antecedent to the diversification in eastern Africa, which primarily involved repeated altitudinal radiation, both up and down the mountains, leading to morphological parallelism in both directions. In general, the plants on a given mountain are more closely related to each other than they are to plants on other mountains, and plants on nearby mountains are more closely related to each other than they are to plants on more distant mountains. The individual steps of the geographic radiation have occurred at various altitudes, some clearly the result of intermountain dispersal. The molecular evidence suggests that two species are extant ancestors to other species on the same or nearby mountains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed DNA sequences from world-wide geographic strains of Plasmodium falciparum and found a complete absence of synonymous DNA polymorphism at 10 gene loci. We hypothesize that all extant world populations of the parasite have recently derived (within several thousand years) from a single ancestral strain. The upper limit of the 95% confidence interval for the time when this most recent common ancestor lived is between 24,500 and 57,500 years ago (depending on different estimates of the nucleotide substitution rate); the actual time is likely to be much more recent. The recent origin of the P. falciparum populations could have resulted from either a demographic sweep (P. falciparum has only recently spread throughout the world from a small geographically confined population) or a selective sweep (one strain favored by natural selection has recently replaced all others). The selective sweep hypothesis requires that populations of P. falciparum be effectively clonal, despite the obligate sexual stage of the parasite life cycle. A demographic sweep that started several thousand years ago is consistent with worldwide climatic changes ensuing the last glaciation, increased anthropophilia of the mosquito vectors, and the spread of agriculture. P. falciparum may have rapidly spread from its African tropical origins to the tropical and subtropical regions of the world only within the last 6,000 years. The recent origin of the world-wide P. falciparum populations may account for its virulence, as the most malignant of human malarial parasites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.