3 resultados para Reading ability
em National Center for Biotechnology Information - NCBI
Resumo:
The relationship between brain activity and reading performance was examined to test the hypothesis that dyslexia involves a deficit in a specific visual pathway known as the magnocellular (M) pathway. Functional magnetic resonance imaging was used to measure brain activity in dyslexic and control subjects in conditions designed to preferentially stimulate the M pathway. Dyslexics showed reduced activity compared with controls both in the primary visual cortex and in a secondary cortical visual area (MT+) that is believed to receive a strong M pathway input. Most importantly, significant correlations were found between individual differences in reading rate and brain activity. These results support the hypothesis for an M pathway abnormality in dyslexia and imply a strong relationship between the integrity of the M pathway and reading ability.
Resumo:
This review discusses how neuroimaging can contribute to our understanding of a fundamental aspect of skilled reading: the ability to pronounce a visually presented word. One contribution of neuroimaging is that it provides a tool for localizing brain regions that are active during word reading. To assess the extent to which similar results are obtained across studies, a quantitative review of nine neuroimaging investigations of word reading was conducted. Across these studies, the results converge to reveal a set of areas active during word reading, including left-lateralized regions in occipital and occipitotemporal cortex, the left frontal operculum, bilateral regions within the cerebellum, primary motor cortex, and the superior and middle temporal cortex, and medial regions in the supplementary motor area and anterior cingulate. Beyond localization, the challenge is to use neuroimaging as a tool for understanding how reading is accomplished. Central to this challenge will be the integration of neuroimaging results with information from other methodologies. To illustrate this point, this review will highlight the importance of spelling-to-sound consistency in the transformation from orthographic (word form) to phonological (word sound) representations, and then explore results from three neuroimaging studies in which the spelling-to-sound consistency of the stimuli was deliberately varied. Emphasis is placed on the pattern of activation observed within the left frontal cortex, because the results provide an example of the issues and benefits involved in relating neuroimaging results to behavioral results in normal and brain damaged subjects, and to theoretical models of reading.
Resumo:
A satellite RNA of 836 nt depends on the bamboo mosaic potexvirus (BaMV) for its replication and encapsulation. The BaMV satellite RNA (satBaMV) contains a single open reading frame encoding a 20-kDa nonstructural protein. A full-length infectious cDNA clone has been generated downstream of the T7 RNA polymerase promoter. To investigate the role of the 20-kDa protein encoded by satBaMV, satBaMV transcripts containing mutations in the open reading frame were tested for their ability to replicate in barley protoplasts and in Chenopodium quinoa using BaMV RNA as a helper genome. Unlike other large satellite RNAs, mutants in the open reading frame did not block their replication, suggesting that the 20-kDa protein is not essential for satBaMV replication. Precise replacement of the open reading frame with sequences encoding chloramphenicol acetyltransferase resulted in high level expression of chloramphenicol acetyltransferase in infected C. quinoa, indicating that satBaMV is potentially useful as a satellite-based expression vector.