9 resultados para Reading
em National Center for Biotechnology Information - NCBI
Resumo:
The relationship between brain activity and reading performance was examined to test the hypothesis that dyslexia involves a deficit in a specific visual pathway known as the magnocellular (M) pathway. Functional magnetic resonance imaging was used to measure brain activity in dyslexic and control subjects in conditions designed to preferentially stimulate the M pathway. Dyslexics showed reduced activity compared with controls both in the primary visual cortex and in a secondary cortical visual area (MT+) that is believed to receive a strong M pathway input. Most importantly, significant correlations were found between individual differences in reading rate and brain activity. These results support the hypothesis for an M pathway abnormality in dyslexia and imply a strong relationship between the integrity of the M pathway and reading ability.
Resumo:
VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html.
Resumo:
This review discusses how neuroimaging can contribute to our understanding of a fundamental aspect of skilled reading: the ability to pronounce a visually presented word. One contribution of neuroimaging is that it provides a tool for localizing brain regions that are active during word reading. To assess the extent to which similar results are obtained across studies, a quantitative review of nine neuroimaging investigations of word reading was conducted. Across these studies, the results converge to reveal a set of areas active during word reading, including left-lateralized regions in occipital and occipitotemporal cortex, the left frontal operculum, bilateral regions within the cerebellum, primary motor cortex, and the superior and middle temporal cortex, and medial regions in the supplementary motor area and anterior cingulate. Beyond localization, the challenge is to use neuroimaging as a tool for understanding how reading is accomplished. Central to this challenge will be the integration of neuroimaging results with information from other methodologies. To illustrate this point, this review will highlight the importance of spelling-to-sound consistency in the transformation from orthographic (word form) to phonological (word sound) representations, and then explore results from three neuroimaging studies in which the spelling-to-sound consistency of the stimuli was deliberately varied. Emphasis is placed on the pattern of activation observed within the left frontal cortex, because the results provide an example of the issues and benefits involved in relating neuroimaging results to behavioral results in normal and brain damaged subjects, and to theoretical models of reading.
Resumo:
The open reading frame P (ORF P) is located in the domain and on the DNA strand of the herpes simplex virus 1 transcribed during latent infection. ORF P is not expressed in productively infected cells as a consequence of repression by the binding of the major viral regulatory protein to its high-affinity binding site. In cells infected with a mutant virus carrying a derepressed gene, ORF P protein is extensively posttranslationally processed. We report that ORF P interacts with a component of the splicing factor SF2/ASF, pulls down a component of the SM antigens, and colocalizes with splicing factors in nuclei of infected cells. The hypothesis that ORF P protein may act to regulate viral gene expression, particularly in situations such as latently infected sensory neurons in which the major regulatory protein is not expressed, is supported by the evidence that in cells infected with a mutant in which the ORF P gene was derepressed, the products of the regulatory genes alpha 0 and alpha 22 are reduced in amounts early in infection but recover late in infection. The proteins encoded by these genes are made from spliced mRNAs, and the extent of recovery of these proteins late in infection correlates with the extent of accumulation of post-translationally processed forms of ORF P protein.
Resumo:
In late 1994 and early 1995, Ebola (EBO) virus dramatically reemerged in Africa, causing human disease in the Ivory Coast and Zaire. Analysis of the entire glycoprotein genes of these viruses and those of other EBO virus subtypes has shown that the virion glycoprotein (130 kDa) is encoded in two reading frames, which are linked by transcriptional editing. This editing results in the addition of an extra nontemplated adenosine within a run of seven adenosines near the middle of the coding region. The primary gene product is a smaller (50-70 kDa), nonstructural, secreted glycoprotein, which is produced in large amounts and has an unknown function. Phylogenetic analysis indicates that EBO virus subtypes are genetically diverse and that the recent Ivory Coast isolate represents a new (fourth) subtype of EBO virus. In contrast, the EBO virus isolate from the 1995 outbreak in Kikwit, Zaire, is virtually identical to the virus that caused a similar epidemic in Yambuku, Zaire, almost 20 years earlier. This genetic stability may indicate that EBO viruses have coevolved with their natural reservoirs and do not change appreciably in the wild.
Resumo:
A satellite RNA of 836 nt depends on the bamboo mosaic potexvirus (BaMV) for its replication and encapsulation. The BaMV satellite RNA (satBaMV) contains a single open reading frame encoding a 20-kDa nonstructural protein. A full-length infectious cDNA clone has been generated downstream of the T7 RNA polymerase promoter. To investigate the role of the 20-kDa protein encoded by satBaMV, satBaMV transcripts containing mutations in the open reading frame were tested for their ability to replicate in barley protoplasts and in Chenopodium quinoa using BaMV RNA as a helper genome. Unlike other large satellite RNAs, mutants in the open reading frame did not block their replication, suggesting that the 20-kDa protein is not essential for satBaMV replication. Precise replacement of the open reading frame with sequences encoding chloramphenicol acetyltransferase resulted in high level expression of chloramphenicol acetyltransferase in infected C. quinoa, indicating that satBaMV is potentially useful as a satellite-based expression vector.
Resumo:
The ganglionic cell type in which varicella-zoster virus (VZV) is latent in humans was analyzed by using antibodies raised against in vitro-expressed VZV open reading frame 63 protein. VZV open reading frame 63 protein was detected exclusively in the cytoplasm of neurons of latently infected human trigeminal and thoracic ganglia. This is, to our knowledge, the first identification of a herpesvirus protein expressed during latency in the human nervous system.
Resumo:
Infectious human respiratory syncytial virus (RSV) was produced by the intracellular coexpression of five plasmid-borne cDNAs. One cDNA encoded a complete positive-sense version of the RSV genome (corresponding to the replicative intermediate RNA or antigenome), and each of the other four encoded a separate RSV protein, namely, the major nucleocapsid N protein, the nucleocapsid P phosphoprotein, the major polymerase L protein, or the protein from the 5' proximal open reading frame of the M2 mRNA [M2(ORF1)]. RSV was not produced if any of the five plasmids was omitted. The requirement for the M2(ORF1) protein is consistent with its recent identification as a transcription elongation factor and confirms its importance for RSV gene expression. It should thus be possible to introduce defined changes into infectious RSV. This should be useful for basic studies of RSV molecular biology and pathogenesis; in addition, there are immediate applications to the development of live attenuated vaccine strains bearing predetermined defined attenuating mutations.
Resumo:
Varicella-zoster virus open reading frame 10 (ORF10) protein, the homolog of the herpes simplex virus protein VP16, can transactivate immediate-early promoters from both viruses. A protein sequence comparison procedure termed hydrophobic cluster analysis was used to identify a motif centered at Phe-28, near the amino terminus of ORF10, that strongly resembles the sequence of the activating domain surrounding Phe-442 of VP16. With a series of GAL4-ORF10 fusion proteins, we mapped the ORF10 transcriptional-activation domain to the amino-terminal region (aa 5-79). Extensive mutagenesis of Phe-28 in GAL4-ORF10 fusion proteins demonstrated the importance of an aromatic or bulky hydrophobic amino acid at this position, as shown previously for Phe-442 of VP16. Transactivation by the native ORF10 protein was abolished when Phe-28 was replaced by Ala. Similar amino-terminal domains were identified in the VP16 homologs of other alphaherpesviruses. Hydrophobic cluster analysis correctly predicted activation domains of ORF10 and VP16 that share critical characteristics of a distinctive subclass of acidic activation domains.