12 resultados para Rb-

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forced expression of the retinoblastoma (RB) gene product inhibits the proliferation of cells in culture. A major target of the RB protein is the S-phase-inducing transcription factor E2F1. RB binds directly to the activation domain of E2F1 and silences it, thereby preventing cells from entering S phase. To induce complete G1 arrest, RB requires the presence of the hbrm/BRG-1 proteins, which are components of the coactivator SWI/SNF complex. This cooperation is mediated through a physical interaction between RB and hbrm/BRG-1. We show here that in transfected cells RB can contact both E2F1 and hbrm at the same time, thereby targeting hbrm to E2F1. E2F1 and hbrm are indeed found within the same complex in vivo. Furthermore, RB and hbrm cooperate to repress E2F1 activity in transient transfection assays. The ability of hbrm to cooperate with RB to repress E2F1 is dependent upon several distinct domains of hbrm, including the RB binding domain and the NTP binding site. However, the bromodomain seems dispensable for this activity. Taken together, our results point out an unexpected role of corepressor for the hbrm protein. The ability of hbrm and RB to cooperate in repressing E2F1 activity could be an underlying mechanism for the observed cooperation between hbrm and RB to induce G1 arrest. Finally, we demonstrate that the domain of hbrm that binds RB has transcriptional activation potential which RB can repress. This suggest that RB not only targets hbrm but also regulates its activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the molecular basis for the clinical phenotype of incomplete penetrance of familial retinoblastoma, we have examined the functional properties of three RB mutations identified in the germ line of five different families with low penetrance. RB mutants isolated from common adult cancers and from classic familial retinoblastoma (designated as classic RB mutations) are unstable and generally do not localize to the nucleus, do not undergo cyclin-dependent kinase (cdk)-mediated hyperphosphorylation, show absent protein “pocket” binding activity, and do not suppress colony growth of RB(−) cells. In contrast, two low-penetrant alleles (661W and “deletion of codon 480”) retained the ability to localize to the nucleus, showed normal cdk-mediated hyperphosphorylation in vivo, exhibited a binding pattern to simian virus 40 large T antigen using a quantitative yeast two-hybrid assay that was intermediate between classic mutants (null) and wild-type RB, and had absent E2F1 binding in vitro. A third, low-penetrant allele, “deletion of RB exon 4,” showed minimal hyperphosphorylation in vivo but demonstrated detectable E2F1 binding in vitro. In addition, each low-penetrant RB mutant retained the ability to suppress colony growth of RB(−) tumor cells. These findings suggest two categories of mutant, low-penetrant RB alleles. Class 1 alleles correspond to promoter mutations, which are believed to result in reduced or deregulated levels of wild-type RB protein, whereas class 2 alleles result in mutant proteins that retain partial activity. Characterization of the different subtypes of class 2 low-penetrant genes may help to define more precisely functional domains within the RB product required for tumor suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adenovirus E1A oncoprotein renders primary cells sensitive to the induction of apoptosis by diverse stimuli, including many anticancer agents. E1A-expressing cells accumulate p53 protein, and p53 potentiates drug-induced apoptosis. To determine how E1A promotes chemosensitivity, a series of E1A mutants were introduced into primary human and mouse fibroblasts using high-titer recombinant retroviruses, allowing analysis of E1A in genetically normal cells outside the context of adenovirus infection. Mutations that disrupted apoptosis and chemosensitivity separated into two complementation groups, which correlated precisely with the ability of E1A to associate with either the p300/CBP or retinoblastoma protein families. Furthermore, E1A mutants incapable of binding RB, p107, and p130 conferred chemosensitivity to fibroblasts derived from RB-deficient mice, but not fibroblasts from mice lacking p107 or p130. Hence, inactivation of RB, but not p107 or p130, is required for chemosensitivity induced by E1A. Finally, the same E1A functions that promote drug-induced apoptosis also induce p53. Together, these data demonstrate that p53 accumulation and chemosensitivity are linked to E1A’s oncogenic potential, and identify a strategy to selectively induce apoptosis in RB-deficient tumor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) causes growth arrest in most cell types. TGF-β induces hypophosphorylation of retinoblastoma susceptibility gene 1 product (RB), which sequesters E2F factors needed for progression into S phase of the cell cycle, thereby leading to cell cycle arrest at G1. It is possible, however, that the E2F-RB complex induced by TGF-β may bind to E2F sites and suppress expression of specific genes whose promoters contain E2F binding sites. We show here that TGF-β treatment of HaCaT cells induced the formation of E2F4-RB and E2F4-p107 complexes, which are capable of binding to E2F sites. Disruption of their binding to DNA with mutation in the E2F sites did not change the expression from promoters of E2F1, B-myb, or HsORC1 genes in cycling HaCaT cells. However, the same mutation stimulated 5- to 6-fold higher expression from all three promoters in cells treated with TGF-β. These results suggest that E2F binding sites play an essential role in the transcription repression of these genes under TGF-β treatment. Consistent with their repression of TGF-β-induced gene expression, introduction of E2F sites into the promoter of cyclin-dependent kinase inhibitor p15INK4B gene effectively inhibited its induction by TGF-β. Experiments utilizing Gal4-RB and Gal4-p107 chimeric constructs demonstrated that either RB or p107 could directly repress TGF-β induction of p15INK4B gene when tethered to p15INK4B promoter through Gal4 DNA binding sites. Therefore, E2F functions to bring RB and p107 to E2F sites and represses gene expression by TGF-β. These results define a specific function for E2F4-RB and E2F4-p107 complexes in gene repression under TGF-β treatment, which may constitute an integral part of the TGF-β-induced growth arrest program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rb protein inhibits both cell cycle progression and apoptosis. Interaction of specific cellular proteins, including E2F1, with Rb C-terminal domains mediates cell cycle regulation. In contrast, the nuclear N5 protein associates with an Rb N-terminal domain with unknown function. The N5 protein contains a region of sequence similarity to the death domain of proteins involved in apoptotic signaling. We demonstrate here that forced N5 expression potently induces apoptosis in several tumor cell lines. Mutation of conserved residues within the death domain homology compromise N5-induced apoptosis, suggesting that it is required for normal function. Endogenous N5 protein is specifically altered in apoptotic cells treated with ionizing radiation. Furthermore, dominant interfering death domain mutants compromise cellular responses to ionizing radiation. Finally, physical association with Rb protein inhibits N5-induced apoptosis. We propose that N5 protein plays a role in the regulation of apoptosis and that Rb directly coordinates cell proliferation and apoptosis by binding specific proteins involved in each process through distinct protein binding domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commitment of cells to replicate and divide correlates with the activation of cyclin-dependent kinases and the inactivation of Rb, the product of the retinoblastoma tumor suppressor gene. Rb is a target of the cyclin-dependent kinases and, when phosphorylated, is inactivated. Biochemical studies exploring the nature of the relationship between cyclin-dependent kinase inhibitors and Rb have supported the hypothesis that these proteins are on a linear pathway regulating commitment. We have been able to study this relationship by genetic means by examining the phenotype of Rb+/−p27−/− mice. Tumors arise from the intermediate lobe cells of the pituitary gland in p27−/− mice, as well as in Rb+/− mice after loss of the remaining wild-type allele of Rb. Using these mouse models, we examined the genetic interaction between Rb and p27. We found that the development of pituitary tumors in Rb+/− mice correlated with a reduction in p27 mRNA and protein expression. To determine whether the loss of p27 was an indirect consequence of tumor formation or a contributing factor to the development of this tumor, we analyzed the phenotype of Rb+/−p27−/− mice. We found that these mice developed pituitary adenocarcinoma with loss of the remaining wild-type allele of Rb and a high-grade thyroid C cell carcinoma that was more aggressive than the disease in either Rb+/− or p27−/− mice. Importantly, we detected both pituitary and thyroid tumors earlier in the Rb+/−p27−/− mice. We therefore propose that Rb and p27 cooperate to suppress tumor development by integrating different regulatory signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblasts derived from embryos homozygous for a disruption of the retinoblastoma gene (Rb) exhibit a shorter G1 than their wild-type counterparts, apparently due to highly elevated levels of cyclin E protein and deregulated cyclin-dependent kinase 2 (CDK2) activity. Here we demonstrate that the Rb-/- fibroblasts display higher levels of phosphorylated H1 throughout G1 with the maximum being 10-fold higher than that of the Rb+/+ fibroblasts. This profile of intracellular H1 phosphorylation corresponds with deregulated CDK2 activity observed in in vitro assays, suggesting that CDK2 may be directly responsible for the in vivo phosphorylation of H1. H1 phosphorylation has been proposed to lead to a relaxation of chromatin structure due to a decreased affinity of this protein for chromatin after phosphorylation. In accord with this, chromatin from the Rb-/- cells is more susceptible to micrococcal nuclease digestion than that from Rb+/+ fibroblasts. Increased H1 phosphorylation and relaxed chromatin structure have also been observed in cells expressing several oncogenes, suggesting a common mechanism in oncogene and tumor suppressor gene function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of the interactions involving transcription factor E2F activity during cell growth and terminal differentiation suggests distinct roles for Rb family members in the regulation of E2F accumulation. The major species of E2F in quiescent cells is a complex containing the E2F4 product in association with the Rb-related p130 protein. As cells enter the cell cycle, this complex disappears, and there is a concomitant accumulation of free E2F activity of which E2F4 is a major component. E2F4 then associates with the Rb-related p107 protein as cells enter S phase. Rb can be found in interactions with each E2F species, including E2F4, during G1, but there appears to be a limited amount of Rb with respect to E2F, likely due to the maintenance of most Rb protein in an inactive state by phosphorylation. A contrasting circumstance can be found during the induction of HL60 cell differentiation. As these cells exit the cell cycle, active Rb protein appears to exceed E2F, as there is a marked accumulation of E2F-Rb interactions, involving all E2F species, including E2F4, which is paralleled by the conversion of Rb from a hyperphosphorylated state to a hypophosphorylated state. These results suggest that the specific ability of Rb protein to interact with each E2F species, dependent on concentration of active Rb relative to accumulation of E2F, may be critical in cell-growth decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The E2F1 transcription factor has a well-characterized activation domain at its C terminus and the E1A protein has a recently defined activation domain at its N terminus. Here we show that these activation domains are highly related in sequence. The sequence homology reflects, at least partly, the conservation of common binding sites for the RB and CBP/p300 proteins, which are preserved in the same relative order along E2F1 and E1A. Furthermore, the interaction of RB and CBP with these two activation domains results in the same functional consequences: RB represses both activation domains, whereas CBP stimulates them. We conclude that the activation domains of E1A(12s) and E2F1 belong to a novel functional class, characterized by specific protein binding sites. The implication of this conservation with respect to E1A-induced stimulation of E2F activity is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient expression of the retinoblastoma protein (Rb) regulates the transcription of a variety of growth-control genes, including c-fos, c-myc, and the gene for transforming growth factor beta 1 via discrete promoter sequences termed retinoblastoma control elements (RCE). Previous analyses have shown that Sp1 is one of three RCE-binding proteins identified in nuclear extracts and that Rb functionally interacts with Sp1 in vivo, resulting in the "superactivation" of Sp1-mediated transcription. By immunochemical and biochemical criteria, we report that an Sp1-related transcription factor, Sp3, is a second RCE-binding protein. Furthermore, in transient cotransfection assays, we report that Rb "superactivates" Sp3-mediated RCE-dependent transcription in vivo and that levels of superactivation are dependent on the trans-activator (Sp1 or Sp3) studied. Using expression vectors carrying mutated Rb cDNAs, we have identified two portions of Rb required for superactivation: (i) a portion of the Rb "pocket" (amino acids 614-839) previously determined to be required for physical interactions between Rb and transcription factors such as E2F-1 and (ii) a novel amino-terminal region (amino acids 140-202). Since both of these regions of Rb are targets of mutation in human tumors, our data suggest that superactivation of Sp1/Sp3 may play a role in Rb-mediated growth suppression and/or the induction of differentiation.