7 resultados para Rational Expectations

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein–protein interacting surfaces are usually large and intricate, making the rational design of small mimetics of these interfaces a daunting problem. On the basis of a structural similarity between the CDR2-like loop of CD4 and the β-hairpin region of a short scorpion toxin, scyllatoxin, we transferred the side chains of nine residues of CD4, central in the binding to HIV-1 envelope glycoprotein (gp120), to a structurally homologous region of the scorpion toxin scaffold. In competition experiments, the resulting 27-amino acid miniprotein inhibited binding of CD4 to gp120 with a 40 μM IC50. Structural analysis by NMR showed that both the backbone of the chimeric β-hairpin and the introduced side chains adopted conformations similar to those of the parent CD4. Systematic single mutations suggested that most CD4 residues from the CDR2-like loop were reproduced in the miniprotein, including the critical Phe-43. The structural and functional analysis performed suggested five additional mutations that, once incorporated in the miniprotein, increased its affinity for gp120 by 100-fold to an IC50 of 0.1–1.0 μM, depending on viral strains. The resulting mini-CD4 inhibited infection of CD4+ cells by different virus isolates. Thus, core regions of large protein–protein interfaces can be reproduced in miniprotein scaffolds, offering possibilities for the development of inhibitors of protein–protein interactions that may represent useful tools in biology and in drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family of nanoscale-sized supramolecular cage compounds with a polyhedral framework is prepared by self-assembly from tritopic building blocks and rectangular corner units via noncovalent coordination interactions. These highly symmetrical cage compounds are described as face-directed, self-assembled truncated tetrahedra with Td symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-component signaling systems involving receptor-histidine kinases are ubiquitous in bacteria and have been found in yeast and plants. These systems provide the major means by which bacteria communicate with each other and the outside world. Remarkably, very little is known concerning the extracellular ligands that presumably bind to receptor-histidine kinases to initiate signaling. The two-component agr signaling circuit in Staphylococcus aureus is one system where the ligands are known in chemical detail, thus opening the door for detailed structure–activity relationship studies. These ligands are short (8- to 9-aa) peptides containing a thiolactone structure, in which the α-carboxyl group of the C-terminal amino acid is linked to the sulfhydryl group of a cysteine, which is always the fifth amino acid from the C terminus of the peptide. One unique aspect of the agr system is that peptides that activate virulence expression in one group of S. aureus strains also inhibit virulence expression in other groups of S. aureus strains. Herein, it is demonstrated by switching the receptor-histidine kinase, AgrC, between strains of different agr specificity types, that intragroup activation and intergroup inhibition are both mediated by the same group-specific receptors. These results have facilitated the development of a global inhibitor of virulence in S. aureus, which consists of a truncated version of one of the naturally occurring thiolactone peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cascade regulatory circuits have been described that control numerous cell processes, and may provide models for the design of artificial circuits with novel properties. Here we describe the design of a transcriptional regulatory cascade to amplify the cell response to a given signal. We used the salicylate-responsive activators of Pseudomonas putida NahR of the naphthalene degradation plasmid NAH7 and XylS2, a mutant regulator of the TOL plasmid for catabolism of m-xylene and their respective cognate promoters Psal and Pm. Control of the expression of xylS2 with the nahR/Psal system permitted either their selective activation with specific effectors for each protein or the simultaneous activation of both of them with salicylate. When cells face the common effector of the two regulators, both the increase in XylS2 concentration and the stimulation of its activity act synergistically on the Pm promoter, amplifying the gene expression capacity by at least one order of magnitude with respect to the individual systems. By changing the hierarchy of regulators, we showed that the specific features of the downstream regulator were crucial for the amplification effect. Directed changes in the effector profile of the regulators allowed the extension of the amplifying system to other molecular signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.