4 resultados para Ratchet-like motion

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Muller proposed that an asexual organism will inevitably accumulate deleterious mutations, resulting in an increase of the mutational load and an inexorable, ratchet-like, loss of the least mutated class [Muller, H.J. (1964) Mutat. Res. 1, 2-9]. The operation of Muller's ratchet on real populations has been experimentally demonstrated only in RNA viruses. However, these cases are exceptional in that the mutation rates of the RNA viruses are extremely high. We have examined whether Muller's ratchet operates in Salmonella typhimurium, a DNA-based organism with a more typical genomic mutation rate. Cells were grown asexually under conditions expected to result in high genetic drift, and the increase in mutational load was determined. S. typhimurium accumulated mutations under these conditions such that after 1700 generations, 1% of the 444 lineages tested had suffered an obvious loss of fitness, as determined by decreased growth rate. These results suggest that in the absence of sex and with high genetic drift, genetic mechanisms, such as back or compensatory mutations, cannot compensate for the accumulation of deleterious mutations. In addition, we measured the appearance of auxotrophs, which allowed us to calculate an average spontaneous mutation rate of approximately 0.3-1.5 x 10(-9) mutations per base pair per generation. This rate is measured for the largest genetic target studied so far, a collection of about 200 genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50-mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single-nucleotide polymorphisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By equilibrating condensed DNA arrays against reservoirs of known osmotic stress and examining them with several structural probes, it has been possible to achieve a detailed thermodynamic and structural characterization of the change between two distinct regions on the liquid-crystalline phase diagram: (i) a higher density hexagonally packed region with long-range bond orientational order in the plane perpendicular to the average molecular direction and (ii) a lower density cholesteric region with fluid-like positional order. X-ray scattering on highly ordered DNA arrays at high density and with the helical axis oriented parallel to the incoming beam showed a sixfold azimuthal modulation of the first-order diffraction peak that reflects the macroscopic bond-orientational order. Transition to the less-dense cholesteric phase through osmotically controlled swelling shows the loss of this bond orientational order, which had been expected from the change in optical birefringence patterns and which is consistent with a rapid onset of molecular positional disorder. This change in order was previously inferred from intermolecular force measurements and is now confirmed by 31P NMR. Controlled reversible swelling and compaction under osmotic stress, spanning a range of densities between approximately 120 mg/ml to approximately 600 mg/ml, allow measurement of the free-energy changes throughout each phase and at the phase transition, essential information for theories of liquid-crystalline states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.