9 resultados para Rapoport, Selomo Yehuda LebRapoport, Selomo Yehuda LebSelomo Yehuda LebRapoport
em National Center for Biotechnology Information - NCBI
Resumo:
A technique is described for displaying distinct tissue layers of large blood vessel walls as well as measuring their mechanical strain. The technique is based on deuterium double-quantum-filtered (DQF) spectroscopic imaging. The effectiveness of the double-quantum filtration in suppressing the signal of bulk water is demonstrated on a phantom consisting of rat tail tendon fibers. Only intrafibrillar water is displayed, excluding all other signals of water molecules that reorient isotropically. One- and two-dimensional spectroscopic imaging of bovine aorta and coronary arteries show the characteristic DQF spectrum of each of the tissue layers. This property is used to obtain separate images of the outer layer, the tunica adventitia, or the intermediate layer, the tunica media, or both. To visualize the effect of elongation, the average residual quadrupole splitting <Δνq> is calculated for each pixel. Two-dimensional deuterium quadrupolar splitting images are obtained for a fully relaxed and a 55% elongated sample of bovine coronary artery. These images indicate that the strong effect of strain is associated with water molecules in the tunica adventitia whereas the DQF NMR signal of water in the tunica media is apparently strain-insensitive. After appropriate calibration, these average quadrupolar splitting images can be interpreted as strain maps.
Resumo:
HIV integrase, the enzyme that inserts the viral DNA into the host chromosome, has no mammalian counterpart, making it an attractive target for antiviral drug design. As one of the three enzymes produced by HIV, it can be expected that inhibitors of this enzyme will complement the therapeutic use of HIV protease and reverse transcriptase inhibitors. We have determined the structure of a complex of the HIV-1 integrase core domain with a novel inhibitor, 5ClTEP, 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone, to 2.1-Å resolution. The inhibitor binds centrally in the active site of the integrase and makes a number of close contacts with the protein. Only minor changes in the protein accompany inhibitor binding. This inhibitor complex will provide a platform for structure-based design of an additional class of inhibitors for antiviral therapy.
Resumo:
This paper gives three related results: (i) a new, simple, fast, monotonically converging algorithm for deriving the L1-median of a data cloud in ℝd, a problem that can be traced to Fermat and has fascinated applied mathematicians for over three centuries; (ii) a new general definition for depth functions, as functions of multivariate medians, so that different definitions of medians will, correspondingly, give rise to different dept functions; and (iii) a simple closed-form formula of the L1-depth function for a given data cloud in ℝd.
Resumo:
Trisomy 21 (Down syndrome) is associated with a high incidence of Alzheimer disease and with deficits in cholinergic function in humans. We used the trisomy 16 (Ts16) mouse model for Down syndrome to identify the cellular basis for the cholinergic dysfunction. Cholinergic neurons and cerebral cortical astroglia, obtained separately from Ts16 mouse fetuses and their euploid littermates, were cultured in various combinations. Choline acetyltransferase activity and cholinergic neuron number were both depressed in cultures in which both neurons and glia were derived from Ts16 fetuses. Cholinergic function of normal neurons was significantly down-regulated by coculture with Ts16 glia. Conversely, neurons from Ts16 animals could express normal cholinergic function when grown with normal glia. These observations indicate that astroglia may contribute strongly to the abnormal cholinergic function in the mouse Ts16 model for Down syndrome. The Ts16 glia could lack a cholinergic supporting factor present in normal glia or contain a factor that down-regulates cholinergic function.
Resumo:
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes.
Resumo:
The rd7 mouse, an animal model for hereditary retinal degeneration, has some characteristics similar to human flecked retinal disorders. Here we report the identification of a deletion in a photoreceptor-specific nuclear receptor (mPNR) mRNA that is responsible for hereditary retinal dysplasia and degeneration in the rd7 mouse. mPNR was isolated from a pool of photoreceptor-specific cDNAs originally created by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. Localization of the gene corresponding to mPNR to mouse Chr 9 near the rd7 locus made it a candidate for the site of the rd7 mutation. Northern analysis of total RNA isolated from rd7 mouse retinas revealed no detectable signal after hybridization with the mPNR cDNA probe. However, with reverse transcription–PCR, we were able to amplify different fragments of mPNR from rd7 retinal RNA and to sequence them directly. We found a 380-nt deletion in the coding region of the rd7 mPNR message that creates a frame shift and produces a premature stop codon. This deletion accounts for more than 32% of the normal protein and eliminates a portion of the DNA-binding domain. In addition, it may result in the rapid degradation of the rd7 mPNR message by the nonsense-mediated decay pathway, preventing the synthesis of the corresponding protein. Our findings demonstrate that mPNR expression is critical for the normal development and function of the photoreceptor cells.
Resumo:
A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.
Resumo:
Two interacting heat shock cognate proteins in the lumen of the yeast endoplasmic reticulum (ER), Sec63p and BiP (Kar2p), are required for posttranslational translocation of yeast alpha-factor precursor in vitro. To investigate the role of these proteins in cotranslational translocation, we examined the import of invertase into wild-type, sec63, and kar2 mutant yeast membranes. We found that Sec63p and Kar2p are necessary for both co- and posttranslational translocation in yeast. Several kar2 mutants, one of which had normal ATPase activity, were defective in cotranslational translocation of invertase. We conclude that the requirement for BiP/Kar2p, which is not seen in a reaction reconstituted with pure mammalian membrane proteins [Görlich, D. & Rapoport, T.A. (1993) Cell 75, 615-630], is not due to a distinction between cotranslational translocation in mammalian cells and posttranslational translocation in yeast cells.