4 resultados para Rahul Sankritayan
em National Center for Biotechnology Information - NCBI
Resumo:
Fibroblast growth factor (FGF) family plays key roles in development, wound healing, and angiogenesis. Understanding of the molecular nature of interactions of FGFs with their receptors (FGFRs) has been seriously limited by the absence of structural information on FGFR or FGF–FGFR complex. In this study, based on an exhaustive analysis of the primary sequences of the FGF family, we determined that the residues that constitute the primary receptor-binding site of FGF-2 are conserved throughout the FGF family, whereas those of the secondary receptor binding site of FGF-2 are not. We propose that the FGF–FGFR interaction mediated by the ‘conserved’ primary site interactions is likely to be similar if not identical for the entire FGF family, whereas the ‘variable’ secondary sites, on both FGF as well as FGFR mediates specificity of a given FGF to a given FGFR isoform. Furthermore, as the pro-inflammatory cytokine interleukin 1 (IL-1) and FGF-2 share the same structural scaffold, we find that the spatial orientation of the primary receptor-binding site of FGF-2 coincides structurally with the IL-1β receptor-binding site when the two molecules are superimposed. The structural similarities between the IL-1 and the FGF system provided a framework to elucidate molecular principles of FGF–FGFR interactions. In the FGF–FGFR model proposed here, the two domains of a single FGFR wrap around a single FGF-2 molecule such that one domain of FGFR binds to the primary receptor-binding site of the FGF molecule, while the second domain of the same FGFR binds to the secondary receptor-binding site of the same FGF molecule. Finally, the proposed model is able to accommodate not only heparin-like glycosaminoglycan (HLGAG) interactions with FGF and FGFR but also FGF dimerization or oligomerization mediated by HLGAG.
Resumo:
Heparin- and heparan sulfate-like glycosaminoglycans (HLGAGs) represent an important class of molecules that interact with and modulate the activity of growth factors, enzymes, and morphogens. Of the many biological functions for this class of molecules, one of its most important functions is its interaction with antithrombin III (AT-III). AT-III binding to a specific heparin pentasaccharide sequence, containing an unusual 3-O sulfate on a N-sulfated, 6-O sulfated glucosamine, increases 1,000-fold AT-III's ability to inhibit specific proteases in the coagulation cascade. In this manner, HLGAGs play an important biological and pharmacological role in the modulation of blood clotting. Recently, a sequencing methodology was developed to further structure-function relationships of this important class of molecules. This methodology combines a property-encoded nomenclature scheme to handle the large information content (properties) of HLGAGs, with matrix-assisted laser desorption ionization MS and enzymatic and chemical degradation as experimental constraints to rapidly sequence picomole quantities of HLGAG oligosaccharides. Using the above property-encoded nomenclature-matrix-assisted laser desorption ionization approach, we found that the sequence of the decasaccharide used in this study is ΔU2SHNS,6SI2SHNS,6SI2SHNS,6SIHNAc,6SGHNS,3S,6S (±DDD4–7). We confirmed our results by using integral glycan sequencing and one-dimensional proton NMR. Furthermore, we show that this approach is flexible and is able to derive sequence information on an oligosaccharide mixture. Thus, this methodology will make possible both the analysis of other unusual sequences in HLGAGs with important biological activity as well as provide the basis for the structural analysis of these pharamacologically important group of heparin/heparan sulfates.
Resumo:
The poly(A)-binding protein (PABP) recognizes the 3′ mRNA poly(A) tail and plays an essential role in eukaryotic translation initiation and mRNA stabilization/degradation. PABP is a modular protein, with four N-terminal RNA-binding domains and an extensive C terminus. The C-terminal region of PABP is essential for normal growth in yeast and has been implicated in mediating PABP homo-oligomerization and protein–protein interactions. A small, proteolytically stable, highly conserved domain has been identified within this C-terminal segment. Remarkably, this domain is also present in the hyperplastic discs protein (HYD) family of ubiquitin ligases. To better understand the function of this conserved region, an x-ray structure of the PABP-like segment of the human HYD protein has been determined at 1.04-Å resolution. The conserved domain adopts a novel fold resembling a right-handed supercoil of four α-helices. Sequence profile searches and comparative protein structure modeling identified a small ORF from the Arabidopsis thaliana genome that encodes a structurally similar but distantly related PABP/HYD domain. Phylogenetic analysis of the experimentally determined (HYD) and homology modeled (PABP) protein surfaces revealed a conserved feature that may be responsible for binding to a PABP interacting protein, Paip1, and other shared interaction partners.
Resumo:
Expression of CC chemokine receptor 5 (CCR5), the major coreceptor for HIV-1 cell entry, and its ligands (e.g., RANTES and MIP-1α) is widely regarded as central to the pathogenesis of HIV-1 infection. By surveying nearly 3,000 HIV+ and HIV− individuals from worldwide populations for polymorphisms in the genes encoding RANTES, MIP-1α, and CCR5, we show that the evolutionary histories of human populations have had a significant impact on the distribution of variation in these genes, and that this may be responsible, in part, for the heterogeneous nature of the epidemiology of the HIV-1 pandemic. The varied distribution of RANTES haplotypes (AC, GC, and AG) associated with population-specific HIV-1 transmission- and disease-modifying effects is a striking example. Homozygosity for the AC haplotype was associated with an increased risk of acquiring HIV-1 as well as accelerated disease progression in European Americans, but not in African Americans. Yet, the prevalence of the ancestral AC haplotype is high in individuals of African origin, but substantially lower in non-Africans. In a Japanese cohort, AG-containing RANTES haplotype pairs were associated with a delay in disease progression; however, we now show that their contribution to HIV-1 pathogenesis and epidemiology in other parts of the world is negligible because the AG haplotype is infrequent in non-Far East Asians. Thus, the varied distribution of RANTES, MIP-1α, and CCR5 haplotype pairs and their population-specific phenotypic effects on HIV-1 susceptibility and disease progression results in a complex pattern of biological determinants of HIV-1 epidemiology. These findings have important implications for the design, assessment, and implementation of effective HIV-1 intervention and prevention strategies.