11 resultados para ROUSSEAU, JEAN JACQUES
em National Center for Biotechnology Information - NCBI
Resumo:
Glial-cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for adult nigral dopamine neurons in vivo. GDNF has both protective and restorative effects on the nigro-striatal dopaminergic (DA) system in animal models of Parkinson disease. Appropriate administration of this factor is essential for the success of its clinical application. Since it cannot cross the blood–brain barrier, a gene transfer method may be appropriate for delivery of the trophic factor to DA cells. We have constructed a recombinant adenovirus (Ad) encoding GDNF and injected it into rat striatum to make use of its ability to infect neurons and to be retrogradely transported by DA neurons. Ad-GDNF was found to drive production of large amounts of GDNF, as quantified by ELISA. The GDNF produced after gene transfer was biologically active: it increased the survival and differentiation of DA neurons in vitro. To test the efficacy of the Ad-mediated GDNF gene transfer in vivo, we used a progressive lesion model of Parkinson disease. Rats received injections unilaterally into their striatum first of Ad and then 6 days later of 6-hydroxydopamine. We found that mesencephalic nigral dopamine neurons of animals treated with the Ad-GDNF were protected, whereas those of animals treated with the Ad-β-galactosidase were not. This protection was associated with a difference in motor function: amphetamine-induced turning was much lower in animals that received the Ad-GDNF than in the animals that received Ad-β-galactosidase. This finding may have implications for the development of a treatment for Parkinson disease based on the use of neurotrophic factors.
Resumo:
Members of the transforming growth factor β (TGF-β) superfamily are involved in diverse physiological activities including development, tissue repair, hormone regulation, bone formation, cell growth, and differentiation. At the cellular level, these functions are initiated by the interaction of ligands with specific transmembrane receptors with intrinsic serine/threonine kinase activity. The signaling pathway that links receptor activation to the transcriptional regulation of the target genes is largely unknown. Recent work in Drosophila and Xenopus signaling suggested that Mad (Mothers against dpp) functions downstream of the receptors of the TGF-β family. Mammalian Mad1 has been reported to respond to bone morphogenetic protein (BMP), but not to TGF-β or activin. We report here the cloning and functional studies of a novel mammalian Mad molecule, Mad3, as well as a rat Mad1 homologue. Overexpression of Mad3 in a variety of cells stimulated basal transcriptional activity of the TGF-β/activin-responsive reporter construct, p3TP-Lux. Furthermore, expression of Mad3 could potentiate the TGF-β- and activin-induced transcriptional stimulation of p3TP-Lux. By contrast, overexpression of Mad1 inhibited the basal as well as the TGF-β/activin induced p3TP-Lux activity. These findings, therefore, support the hypothesis that Mad3 may serve as a mediator linking TGF-β/activin receptors to transcriptional regulation.
Resumo:
Rearrangement of chromosomal bands 1q21–23 is one of the most frequent chromosomal aberrations observed in hematological malignancy. The genes affected by these rearrangements remain poorly characterized. Typically, 1q21–23 rearrangements arise during tumor evolution and accompany disease-specific chromosomal rearrangements such as t(14;18) (BCL2) and t(8;14) (MYC), where they are thus thought to play an important role in tumor progression. The pathogenetic basis of this 1q21–23-associated disease progression is currently unknown. In this setting, we surveyed our series of follicular lymphoma for evidence of recurring 1q21–23 breaks and identified three cases in which a t(14;18)(q32;q21) was accompanied by a novel balanced t(1;22)(q22;q11). Molecular cloning of the t(1;22) in a cell line (B593) derived from one of these cases and detailed fluorescent in situ hybridization mapping in the two remaining cases identified the FCGR2B gene, which encodes the immunoreceptor tyrosine-based inhibition motif-bearing IgG Fc receptor, FcγRIIB, as the target gene of the t(1;22)(q22;q11). We demonstrate deregulation of FCGR2B leading to hyperexpression of FcγRIIb2 as the principal consequence of the t(1;22). This is evidence that IgG Fc receptors can be targets for deregulation through chromosomal translocation in lymphoma. It suggests that dysregulation of FCGR2B may play a role in tumor progression in follicular lymphoma.
Resumo:
Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an “intracrine” fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.
Resumo:
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by endocrine tumors of parathyroids, pancreatic islets, and anterior pituitary. The MEN1 gene encodes a nuclear protein called menin. In MEN1 carriers inactivating mutations give rise to a truncated product consistent with menin acting as a tumor suppressor gene. However, the role of menin in tumorigenesis and its physiological functions are not known. Here, we show that menin inactivation by antisense RNA antagonizes transforming growth factor type β-mediated cell growth inhibition. Menin interacts with Smad3, and antisense menin suppresses transforming growth factor type β-induced and Smad3-induced transcriptional activity by inhibiting Smad3/4-DNA binding at specific transcriptional regulatory sites. These results implicate a mechanism of tumorigenesis by menin inactivation.
Resumo:
There is substantial scientific evidence to support the notion that bovine spongiform encephalopathy (BSE) has contaminated human beings, causing variant Creutzfeldt–Jakob disease (vCJD). This disease has raised concerns about the possibility of an iatrogenic secondary transmission to humans, because the biological properties of the primate-adapted BSE agent are unknown. We show that (i) BSE can be transmitted from primate to primate by intravenous route in 25 months, and (ii) an iatrogenic transmission of vCJD to humans could be readily recognized pathologically, whether it occurs by the central or peripheral route. Strain typing in mice demonstrates that the BSE agent adapts to macaques in the same way as it does to humans and confirms that the BSE agent is responsible for vCJD not only in the United Kingdom but also in France. The agent responsible for French iatrogenic growth hormone-linked CJD taken as a control is very different from vCJD but is similar to that found in one case of sporadic CJD and one sheep scrapie isolate. These data will be key in identifying the origin of human cases of prion disease, including accidental vCJD transmission, and could provide bases for vCJD risk assessment.