2 resultados para ROP
em National Center for Biotechnology Information - NCBI
Resumo:
Caenorhabditis elegans dauer formation is an alternative larval developmental pathway that the worm can take when environmental conditions become detrimental. Animals can survive several months in this stress-resistant stage and can resume normal development when growth conditions improve. Although the worms integrate a variety of sensory information to commit to dauer formation, it is currently unknown whether they also monitor internal cellular damage. The Ro ribonucleoprotein complex, which was initially described as a human autoantigen, is composed of one major 60-kDa protein, Ro60, that binds to one of four small RNA molecules, designated Y RNAs. Ro60 has been shown to bind mutant 5S rRNA molecules in Xenopus oocytes, suggesting a role for Ro60 in 5S rRNA biogenesis. Analysis of ribosomes from a C. elegans rop-1(−) strain, which is null for the expression of Ro60, demonstrated that they contain a high percentage of mutant 5S rRNA molecules, thereby strengthening the notion of a link between the rop-1 gene product and 5S rRNA quality control. The Ro particle was recently shown to be involved in the resistance of Deinococcus radiodurans to UV irradiation, suggesting a role for the Ro complex in stress resistance. We have studied the role of rop-1 in dauer formation. We present genetic and biochemical evidence that rop-1 interacts with dauer-formation genes and is involved in the regulation of the worms' entry into the dauer stage. Furthermore, we find that the rop-1 gene product undergoes a proteolytic processing step that is regulated by the dauer formation pathway via an aspartic proteinase. These results suggest that the Ro particle may function in an RNA quality-control checkpoint for dauer formation.
Resumo:
The Rho small GTP-binding proteins are versatile, conserved molecular switches in eukaryotic signal transduction. Plants contain a unique subfamily of Rho-GTPases called Rop (Rho-related GTPases from plants). Our previous studies involving injection of antibodies indicated that the pea Rop GTPase Rop1Ps is critical for pollen tube growth. In this study we show that overexpression of an apparent Arabidopsis ortholog of Rop1Ps, Rop1At, induces isotropic cell growth in fission yeast (Schizosaccharomyces pombe) and that green fluorescence protein-tagged Rop1At displays polar localization to the site of growth in yeast. We found that Rop1At and two other Arabidopsis Rops, Rop3At and Rop5At, are all expressed in mature pollen. All three pollen Rops fall into the same subgroup as Rop1Ps and diverge from those Rops that are not expressed in mature pollen, suggesting a coupling of the structural conservation of Rop GTPases to their gene expression in pollen. However, pollen-specific transcript accumulation for Rop1At is much higher than that for Rop3At and Rop5At. Furthermore, Rop1At is specifically expressed in anthers, whereas Rop3At and Rop5At are also expressed in vegetative tissues. In transgenic plants containing the Rop1At promoter:GUS fusion gene, GUS is specifically expressed in mature pollen and pollen tubes. We propose that Rop1At may play a predominant role in the regulation of polarized cell growth in pollen, whereas its close relatives Rop3At and Rop5At may be functionally redundant to Rop1At in pollen.