4 resultados para ROLLING IN-VIVO
em National Center for Biotechnology Information - NCBI
Resumo:
Leukocyte interactions with vascular endothelium during inflammation occur through discrete steps involving selectin-mediated leukocyte rolling and subsequent firm adhesion mediated by members of the integrin and Ig families of adhesion molecules. To identify functional synergy between selectin and Ig family members, mice deficient in both L-selectin and intercellular adhesion molecule 1 (ICAM-1) were generated. Leukocyte rolling velocities in cremaster muscle venules were increased significantly in ICAM-1-deficient mice during both trauma- and tumor necrosis factor α-induced inflammation, but rolling leukocyte flux was not reduced. Elimination of ICAM-1 expression in L-selectin-deficient mice resulted in a sharp reduction in the flux of rolling leukocytes during tumor necrosis factor α-induced inflammation. The observed differences in leukocyte rolling behavior demonstrated that ICAM-1 expression was required for optimal P- and L-selectin-mediated rolling. Increased leukocyte rolling velocities presumably translated into decreased tissue emigration because circulating neutrophil, monocyte, and lymphocyte numbers were increased markedly in L-selectin/ICAM-1-deficient mice. Furthermore, neutrophil emigration during acute peritonitis was reduced by 80% in the double-deficient mice compared with either L-selectin or ICAM-1-deficient mice. Thus, members of the selectin and Ig families function synergistically to mediate optimal leukocyte rolling in vivo, which is essential for the generation of effective inflammatory responses.
Resumo:
The integrin αLβ2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the αM and α2 subunits has been crystallized in both open and closed conformations; however, the αL I domain has been crystallized in only the closed conformation. We hypothesized that the αL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the αL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg2+. Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The kon, koff, and KD values for the locked open I domain were within 1.5-fold of values previously determined for the αLβ2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized αLβ2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.
Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin.
Resumo:
P-selectin, found in storage granules of platelets and endothelial cells, can be rapidly expressed upon stimulation. Mice lacking this membrane receptor exhibit a severe impairment of leukocyte rolling. We observed that, in addition to leukocytes, platelets were rolling in mesenteric venules of wild-type mice. To investigate the role of P-selectin in this process, resting or activated platelets from wild-type or P-selectin-deficient mice were fluorescently labeled and transfused into recipients of either genotype. Platelet-endothelial interactions were monitored by intravital microscopy. We observed rolling of either wild-type or P-selectin-deficient resting platelets on wild-type endothelium. Endothelial stimulation with the calcium ionophore A23187 increased the number of platelets rolling 4-fold. Activated P-selectin-deficient platelets behaved similarly, whereas activated wild-type platelets bound to leukocytes and were seen rolling together. Platelets of either genotype, resting or activated, interacted minimally with mutant endothelium even after A23187 treatment. The velocity of platelet rolling was 6- to 9-fold greater than that of leukocytes. Our results demonstrate that (i) platelets roll on endothelium in vivo, (ii) this interaction requires endothelial but not platelet P-selectin, and (iii) platelet rolling appears to be independent of platelet activation, indicating constitutive expression of a P-selectin ligand(s) on platelets. We have therefore observed an interesting parallel between platelets and leukocytes in that both of these blood cell types roll on stimulated vessel wall and that this process is dependent on the expression of endothelial P-selectin.
Resumo:
The RecBCD enzyme of Escherichia coli promotes recombination preferentially at chi nucleotide sequences and has in vivo helicase and strong duplex DNA exonuclease (exoV) activities. The enzyme without the RecD subunit, as in a recD null mutant, promotes recombination efficiently but independently of chi and has no nucleolytic activity. Employing phage lambda red gam crosses, phage T4 2- survival measurements, and exoV assays, it is shown that E. coli cells in which RecBCD has extensive opportunity to interact with linear chi-containing DNA (produced by rolling circle replication of a plasmid with chi or by bleomycin-induced fragmentation of the cellular chromosome) acquire the phenotype of a recD mutant and maintain this for approximately 2 h. It is concluded that RecBCD is converted into RecBC during interaction with chi by irreversible inactivation of RecD. After conversion, the enzyme is released and initiates recombination on other DNA molecules in a chi-independent fashion. Overexpression of recD+ (from a plasmid) prevented the phenotypic change and providing RecD after the change restored chi-stimulated recombination. The observed recA+ dependence of the downregulation of exoV could explain the previously noted "reckless" DNA degradation of recA mutants. It is proposed that chi sites are regulatory elements for the RecBCD to RecBC switch and thereby function as cis- and trans-acting stimulators of RecBC-dependent recombination.