5 resultados para ROI reusable object and instruction
em National Center for Biotechnology Information - NCBI
Resumo:
Until the mid-1990s a person could not point to any celestial object and say with assurance that “here is a brown dwarf.” Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.
Resumo:
Extrastriate visual cortex of the ventral-posterior suprasylvian gyrus (vPS cortex) of freely behaving cats was reversibly deactivated with cooling to determine its role in performance on a battery of simple or masked two-dimensional pattern discriminations, and three-dimensional object discriminations. Deactivation of vPS cortex by cooling profoundly impaired the ability of the cats to recall the difference between all previously learned pattern and object discriminations. However, the cats' ability to learn or relearn pattern and object discriminations while vPS was deactivated depended upon the nature of the pattern or object and the cats' prior level of exposure to them. During cooling of vPS cortex, the cats could neither learn the novel object discriminations nor relearn a highly familiar masked or partially occluded pattern discrimination, although they could relearn both the highly familiar object and simple pattern discriminations. These cooling-induced deficits resemble those induced by cooling of the topologically equivalent inferotemporal cortex of monkeys and provides evidence that the equivalent regions contribute to visual processing in similar ways.
Resumo:
Many prefrontal (PF) neurons convey information about both an object’s identity (what) and its location (where). To explore how they represent conjunctions of what and where, we explored the receptive fields of their mnemonic activity (i.e., their “memory fields”) by requiring monkeys to remember both an object and its location at many positions throughout a wide portion of central vision. Many PF neurons conveyed object information and had highly localized memory fields that emphasized the contralateral, but not necessarily foveal, visual field. These results indicate that PF neurons can simultaneously convey precise location and object information and thus may play a role in constructing a unified representation of a visual scene.
Resumo:
The monkey premotor cortex contains neurons that discharge during action execution and during observation of actions made by others. Transcranial magnetic stimulation experiments suggest that a similar observation/execution matching system also is present in humans. We recorded neuromagnetic oscillatory activity of the human precentral cortex from 10 healthy volunteers while (i) they had no task to perform, (ii) they were manipulating a small object, and (iii) they were observing another individual performing the same task. The left and right median nerves were stimulated alternately (interstimulus interval, 1.5 s) at intensities exceeding motor threshold, and the poststimulus rebound of the rolandic 15- to 25-Hz activity was quantified. In agreement with previous studies, the rebound was strongly suppressed bilaterally during object manipulation. Most interestingly, the rebound also was significantly diminished during action observation (31–46% of the suppression during object manipulation). Control experiments, in which subjects were instructed to observe stationary or moving stimuli, confirmed the specificity of the suppression effect. Because the recorded 15- to 25-Hz activity is known to originate mainly in the precentral motor cortex, we concluded that the human primary motor cortex is activated during observation as well as execution of motor tasks. These findings have implications for a better understanding of the machinery underlying action recognition in humans.
Resumo:
Two objects with homologous landmarks are said to be of the same shape if the configurations of landmarks of one object can be exactly matched with that of the other by translation, rotation/reflection, and scaling. The observations on an object are coordinates of its landmarks with reference to a set of orthogonal coordinate axes in an appropriate dimensional space. The origin, choice of units, and orientation of the coordinate axes with respect to an object may be different from object to object. In such a case, how do we quantify the shape of an object, find the mean and variation of shape in a population of objects, compare the mean shapes in two or more different populations, and discriminate between objects belonging to two or more different shape distributions. We develop some methods that are invariant to translation, rotation, and scaling of the observations on each object and thereby provide generalizations of multivariate methods for shape analysis.