264 resultados para RNA-dependent RNA polymerase 1 gene

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical general transcription factors, such as TATA binding protein and TFII B, have not yet been identified in any member of the Trypanosomatidae family of parasitic protozoa. Interestingly, mRNA coding genes do not appear to have discrete transcriptional start sites, although in most cases they require an RNA polymerase that has the biochemical properties of eukaryotic RNA polymerase II. A discrete transcription initiation site may not be necessary for mRNA synthesis since the sequences upstream of each transcribed coding region are trimmed from the nascent transcript when a short m7G-capped RNA is added during mRNA maturation. This short 39 nt m7G-capped RNA, the spliced leader (SL) sequence, is expressed as an ∼100 nt long RNA from a set of reiterated, though independently transcribed, genes in the trypanosome genome. Punctuation of the 5′ end of mRNAs by a m7G cap-containing spliced leader is a developing theme in the lower eukaryotic world; organisms as diverse as Euglena and nematode worms, including Caenorhabditis elegans, utilize SL RNA in their mRNA maturation programs. Towards understanding the coordination of SL RNA and mRNA expression in trypanosomes, we have begun by characterizing SL RNA gene expression in the model trypanosome Leptomonas seymouri. Using a homologous in vitro transcription system, we demonstrate in this study that the SL RNA is transcribed by RNA polymerase II. During SL RNA transcription, accurate initiation is determined by an initiator element with a loose consensus of CYAC/AYR(+1). This element, as well as two additional basal promoter elements, is divergent in sequence from the basal transcription elements seen in other eukaryotic gene promoters. We show here that the in vitro transcription extract contains a binding activity that is specific for the initiator element and thus may participate in recruiting RNA polymerase II to the SL RNA gene promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcriptional activity of an in vitro assembled human interferon-β gene enhanceosome is highly synergistic. This synergy requires five distinct transcriptional activator proteins (ATF2/c-JUN, interferon regulatory factor 1, and p50/p65 of NF-κB), the high mobility group protein HMG I(Y), and the correct alignment of protein-binding sites on the face of the DNA double helix. Here, we investigate the mechanisms of enhanceosome-dependent transcriptional synergy during preinitiation complex assembly in vitro. We show that the stereospecific assembly of the enhanceosome is critical for the efficient recruitment of TFIIB into a template-committed TFIID-TFIIA-USA (upstream stimulatory activity complex) and for the subsequent recruitment of the RNA polymerase II holoenzyme complex. In addition, we provide evidence that recruitment of the holoenzyme by the enhanceosome is due, at least in part, to interactions between the enhanceosome and the transcriptional coactivator CREB, cAMP responsive element binding protein (CBP). These studies reveal a unique role of enhanceosomes in the cooperative assembly of the transcription machinery on the human interferon-β promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus, a major human pathogen, to 2.8-Å resolution. This enzyme is a key target for developing specific antiviral therapy. The structure of the catalytic domain contains 531 residues folded in the characteristic fingers, palm, and thumb subdomains. The fingers subdomain contains a region, the “fingertips,” that shares the same fold with reverse transcriptases. Superposition to the available structures of the latter shows that residues from the palm and fingertips are structurally equivalent. In addition, it shows that the hepatitis C virus polymerase was crystallized in a closed fingers conformation, similar to HIV-1 reverse transcriptase in ternary complex with DNA and dTTP [Huang H., Chopra, R., Verdine, G. L. & Harrison, S. C. (1998) Science 282, 1669–1675]. This superposition reveals the majority of the amino acid residues of the hepatitis C virus enzyme that are likely to be implicated in binding to the replicating RNA molecule and to the incoming NTP. It also suggests a rearrangement of the thumb domain as well as a possible concerted movement of thumb and fingertips during translocation of the RNA template-primer in successive polymerization rounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Termination of murine rDNA transcription by RNA polymerase I (Pol I) requires pausing of Pol I by terminator-bound TTF-I (transcription termination factor for Pol I), followed by dissociation of the ternary complex by PTRF (Pol I and transcript release factor). To examine the functional correlation between transcription termination and initiation, we have compared transcription on terminator-containing and terminator-less rDNA templates. We demonstrate that terminated RNA molecules are more efficiently synthesized than run-off transcripts, indicating that termination facilitates reinitiation. Transcriptional enhancement is observed in multiple- but not single-round transcription assays measuring either promoter-dependent or promoter-independent Pol I transcription. Increased synthesis of terminated transcripts is observed in crude extracts but not in a PTRF-free reconstituted transcription system, indicating that PTRF-mediated release of pre-rRNA is responsible for transcriptional enhancement. Consistent with PTRF serving an important role in modulating the efficiency of rRNA synthesis, PTRF exhibits pronounced charge heterogeneity, is phosphorylated at multiple sites and fractionates into transcriptionally active and inactive forms. The results suggest that regulation of PTRF activity may be an as yet unrecognized means to control the efficiency of ribosomal RNA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants contain RNA-dependent RNA polymerase (RdRP) activities that synthesize short cRNAs by using cellular or viral RNAs as templates. During studies of salicylic acid (SA)-induced resistance to viral pathogens, we recently found that the activity of a tobacco RdRP was increased in virus-infected or SA-treated plants. Biologically active SA analogs capable of activating plant defense response also induced the RdRP activity, whereas biologically inactive analogs did not. A tobacco RdRP gene, NtRDRP1, was isolated and found to be induced both by virus infection and by treatment with SA or its biologically active analogs. Tobacco lines deficient in the inducible RDRP activity were obtained by expressing antisense RNA for the NtRDRP1 gene in transgenic plants. When infected by tobacco mosaic virus, these transgenic plants accumulated significantly higher levels of viral RNA and developed more severe disease symptoms than wild-type plants. After infection by a strain of potato virus X that does not spread in wild-type tobacco plants, the transgenic NtRDRP1 antisense plants accumulated virus and developed symptoms not only locally in inoculated leaves but also systemically in upper uninoculated leaves. These results strongly suggest that inducible RdRP activity plays an important role in plant antiviral defense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tat-responsive region (TAR) element is a critical RNA regulatory element in the human immunodeficiency virus (HIV) long terminal repeat, which is required for activation of gene expression by the transactivator protein Tat. Recently, we demonstrated by gel-retardation analysis that RNA polymerase II binds to TAR RNA and that Tat prevents this binding even when Tat does not bind to TAR RNA. These results suggested that direct interactions between Tat and RNA polymerase II may prevent RNA polymerase II pausing and lead to Tat-mediated increases in transcriptional elongation. To test this possibility, we performed protein interaction studies with RNA polymerase II and both the HIV-1 and the closely related HIV-2 Tat protein. These studies indicated that both the HIV-1 and HIV-2 Tat proteins could specifically interact with RNA polymerase II. Mutagenesis of both HIV-1 and HIV-2 Tat demonstrated that the basic domains of both the HIV-1 and HIV-2 Tat proteins were required for this interaction. Furthermore, "far Western" analysis suggested that the largest subunit of RNA polymerase II was the site for interaction with Tat. The interactions between Tat and RNA polymerase II were of similar magnitude to those detected between RNA polymerase II and the cellular transcription factor RAP30, which stably associates with RNA polymerase II during transcriptional elongation. These studies are consistent with the model that RNA polymerase II is a cellular target for Tat resulting in Tat-mediated increases in transcriptional elongation from the HIV long terminal repeat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizobium meliloti C4-dicarboxylic acid transport protein D (DCTD) activates transcription by a form of RNA polymerase holoenzyme that has sigma 54 as its sigma factor (referred to as E sigma 54). DCTD catalyzes the ATP-dependent isomerization of closed complexes between E sigma 54 and the dctA promoter to transcriptionally productive open complexes. Transcriptional activation probably involves specific protein-protein interactions between DCTD and E sigma 54. Interactions between sigma 54-dependent activators and E sigma 54 are transient, and there has been no report of a biochemical assay for contact between E sigma 54 and any activator to date. Heterobifunctional crosslinking reagents were used to examine protein-protein interactions between the various subunits of E sigma 54 and DCTD. DCTD was crosslinked to Salmonella typhimurium sigma 54 with the crosslinking reagents succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate and N-hydroxysulfosuccinimidyl-4-azidobenzoate. Cys-307 of sigma 54 was identified by site-directed mutagenesis as the residue that was crosslinked to DCTD. DCTD was also crosslinked to the beta subunit of Escherichia coli core RNA polymerase with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, but not with N-hydroxysulfosuccinimidyl-4-azidobenzoate. These data suggest that interactions of DCTD with sigma 54 and the beta subunit may be important for transcriptional activation and offer evidence for interactions between a sigma 54-dependent activator and sigma 54, as well as the beta subunit of RNA polymerase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TFC5, the unique and essential gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor (TF)IIIB has been cloned. It encodes a 594-amino acid protein (67,688 Da). Escherichia coli-produced B" has been used to reconstitute entirely recombinant TFIIIB that is fully functional for TFIIIC-directed, as well as TATA box-dependent, DNA binding and transcription. The DNase I footprints of entirely recombinant TFIIIB, composed of B", the 67-kDa Brf, and TATA box-binding protein, and TFIIIB reconstituted with natural B" are indistinguishable. A truncated form of B" lacking 39 N-terminal and 107 C-terminal amino acids is also functional for transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulation of human immunodeficiency virus type 1 (HIV-1) gene expression in response to Tat is dependent on an element downstream of the HIV-1 transcriptional initiation site designated the trans-activating region (TAR). TAR forms a stable stem-loop RNA structure in which a 3-nt bulge structure and a 6-nt loop structure are important for Tat activation. In the absence of Tat, the HIV-1 promoter generates so-called short or nonprocessive transcripts terminating at +60, while in the presence of Tat the synthesis of these short transcripts is markedly decreased and transcripts that extend through the 9.0-kb HIV-1 genome are synthesized. Tat effects on transcriptional elongation are likely due to alterations in the elongation properties of RNA polymerase II. In this study we demonstrated that a set of cellular cofactors that modulate the binding of the cellular protein TRP-185 to the TAR RNA loop sequences also functioned to markedly stimulate the specific binding of hypophosphorylated (IIa) and hyperphosphorylated (IIo) RNA polymerase II to TAR RNA. The concentrations of RNA polymerase II required for this interaction with TAR RNA were similar to those required to initiate in vitro transcription from the HIV-1 long terminal repeat. RNA gel retardation analysis with wild-type and mutant TAR RNAs indicated that the TAR RNA loop and bulge sequences were critical for the binding of RNA polymerase II. The addition of wild-type but not mutant Tat protein to gel retardation analysis with TAR RNA and RNA polymerase II resulted in the loss of binding of RNA polymerase II binding to TAR RNA. These results suggest that Tat may function to alter RNA polymerase II, which is paused due to its binding to HIV-1 TAR RNA with resultant stimulation of its transcriptional elongation properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simple, rapid procedure for reconstitution of Escherichia coli RNA polymerase holoenzyme (RNAP) from individual recombinant alpha, beta, beta', and sigma 70 subunits. Hexahistidine-tagged recombinant alpha subunit purified by batch-mode metal-ion-affinity chromatography is incubated with crude recombinant beta, beta', and sigma 70 subunits from inclusion bodies, and the resulting reconstituted recombinant RNAP is purified by batch-mode metal-ion-affinity chromatography. RNAP prepared by this procedure is indistinguishable from RNAP prepared by conventional methods with respect to subunit stoichiometry, alpha-DNA interaction, catabolite gene activator protein (CAP)-independent transcription, and CAP-dependent transcription. Experiments with alpha (1-235), an alpha subunit C-terminal deletion mutant, establish that the procedure is suitable for biochemical screening of subunit lethal mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel RNase activity was identified in a yeast RNA polymerase I (pol I) in vitro transcription system. Transcript cleavage occurred at the 3′ end and was dependent on the presence of ternary pol I/DNA/RNA complexes and an additional protein factor not identical to transcription factor IIS (TFIIS). Transcript cleavage was observed both on arrested complexes at the linearized ends of the transcribed DNA and on intrinsic blocks of the DNA template. Shortened transcripts that remained associated within the ternary complexes were capable of resuming RNA chain elongation. Possible functions of the nuclease for transcript elongation or termination are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription of ribosomal RNA genes by RNA polymerase (pol) I oscillates during the cell cycle, being maximal in S and G2 phase, repressed during mitosis, and gradually recovering during G1 progression. We have shown that transcription initiation factor (TIF)-IB/SL1 is inactivated during mitosis by cdc2/cyclin B-directed phosphorylation of TAFI110. In this study, we have monitored reactivation of transcription after exit from mitosis. We demonstrate that the pol I factor UBF is also inactivated by phosphorylation but recovers with different kinetics than TIF-IB/SL1. Whereas TIF-IB/SL1 activity is rapidly regained on entry into G1, UBF is reactivated later in G1, concomitant with the onset of pol I transcription. Repression of pol I transcription in mitosis and early G1 can be reproduced with either extracts from cells synchronized in M or G1 phase or with purified TIF-IB/SL1 and UBF isolated in the presence of phosphatase inhibitors. The results suggest that two basal transcription factors, e.g., TIF-IB/SL1 and UBF, are inactivated at mitosis and reactivated by dephosphorylation at the exit from mitosis and during G1 progression, respectively.