342 resultados para RNA HELICASES
em National Center for Biotechnology Information - NCBI
Resumo:
Splicing of nuclear precursors of mRNA (pre-mRNA) involves dynamic interactions between the RNA constituents of the spliceosome. The rearrangement of RNA–RNA interactions, such as the unwinding of the U4/U6 duplex, is believed to be driven by ATP-dependent RNA helicases. We recently have shown that spliceosomal U5 small nuclear ribonucleoproteins (snRNPs) from HeLa cells contain two proteins, U5–200kD and U5–100kD, which share homology with the DEAD/DEXH-box families of RNA helicases. Here we demonstrate that purified U5 snRNPs exhibit ATP-dependent unwinding of U4/U6 RNA duplices in vitro. To identify the protein responsible for this activity, U5 snRNPs were depleted of a subset of proteins under high salt concentrations and assayed for RNA unwinding. The activity was retained in U5 snRNPs that contain the U5–200kD protein but lack U5–100kD, suggesting that the U5–200kD protein could mediate U4/U6 duplex unwinding. Finally, U5–200kD was purified to homogeneity by glycerol gradient centrifugation of U5 snRNP proteins in the presence of sodium thiocyanate, followed by ion exchange chromatography. The RNA unwinding activity was found to reside exclusively with the U5–200kD DEXH-box protein. Our data raise the interesting possibility that this RNA helicase catalyzes unwinding of the U4/U6 RNA duplex in the spliceosome.
Resumo:
The Saccharomyces cerevisiae genes PRP2, PRP16, and PRP22 encode pre-mRNA splicing factors that belong to the highly conserved “DEAH” family of putative RNA helicases. We previously identified two additional members of this family, JA1 and JA2. To investigate its biological function, we cloned the JA1 gene and generated alleles carrying mutations identical to those found in highly conserved regions of other members of the DEAH family. A ja1 allele carrying a mutation identical to that in the temperature-sensitive (ts) prp22–1 gene conferred ts phenotype when integrated into the genome of a wild-type strain by gene replacement. Northern analysis of RNA obtained from the ts strain shifted to a nonpermissive temperature revealed accumulation of unspliced pre-mRNAs and excised intron lariats. Furthermore, analysis of splicing complexes showed that intron lariats accumulated in spliceosomes. The results presented indicate that JA1 encodes a pre-mRNA processing factor (Prp) involved in disassembly of spliceosomes after the release of mature mRNA. We have therefore renamed this gene PRP43.
Resumo:
RNA helicases of the DEAD box family are involved in almost all cellular processes involving RNA molecules. Here we describe functional characterization of the yeast RNA helicase Dbp8p (YHR169w). Our results show that Dbp8p is an essential nucleolar protein required for biogenesis of the small ribosomal subunit. In vivo depletion of Dbp8p resulted in a ribosomal subunit imbalance due to a deficit in 40S ribosomal subunits. Subsequent analyses of pre-rRNA processing by pulse–chase labeling, northern hybridization and primer extension revealed that the early steps of cleavage of the 35S precursor at sites A1 and A2 are inhibited and delayed at site A0. Synthesis of 18S rRNA, the RNA moiety of the 40S subunit, is thereby blocked in the absence of Dbp8p. The involvement of Dbp8p as a bona fide RNA helicase in ribosome biogenesis is strongly supported by the loss of Dbp8p in vivo function obtained by site-directed mutagenesis of some conserved motifs carrying the enzymatic properties of the protein family.
Resumo:
The Escherichia coli protein DbpA is unique in its subclass of DEAD box RNA helicases, because it possesses ATPase-specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity had been well defined toward various substrates, its RNA helicase activity remained to be characterized. Herein, we show by using biochemical assays and atomic force microscopy that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD box proteins by a single-molecule visualization methodology. Our atomic force microscopy images enabled us to observe directly the unwinding reaction of a DEAD box helicase on long stretches of double-stranded RNA. Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y-shaped intermediate after its progression through double-stranded RNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD box proteins in general as RNA helicases. However, accumulated evidence and the results reported herein suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.
Resumo:
Ribozyme activity in vivo depends on achieving high-level expression, intracellular stability, target colocalization, and cleavage site access. At present, target site selection is problematic because of unforeseeable secondary and tertiary RNA structures that prevent cleavage. To overcome this design obstacle, we wished to engineer a ribozyme that could access any chosen site. To create this ribozyme, the constitutive transport element (CTE), an RNA motif that has the ability to interact with intracellular RNA helicases, was attached to our ribozymes so that the helicase-bound, hybrid ribozymes would be produced in cells. This modification significantly enhanced ribozyme activity in vivo, permitting cleavage of sites previously found to be inaccessible. To confer cleavage enhancement, the CTE must retain helicase-binding activity. Binding experiments demonstrated the likely involvement of RNA helicase(s). We found that attachment of the RNA motif to our tRNA ribozymes leads to cleavage in vivo at the chosen target site regardless of the local RNA secondary or tertiary structure.
Resumo:
A subtractive PCR methodology known as representational difference analysis was used to clone specific nucleotide sequences present in the infectious plasma from a tamarin infected with the GB hepatitis agent. Eleven unique clones were identified, seven of which were examined extensively. All seven clones appeared to be derived from sequences exogenous to the genomes of humans, tamarins, Saccharomyces cerevisiae, and Escherichia coli. In addition, sequences from these clones were not detected in plasma or liver tissue of tamarins prior to their inoculation with the GB agent. These sequences were detected by reverse transcription-PCR in acute-phase plasma of tamarins inoculated with the GB agent. Probes derived from two of the seven clones detected an RNA species of > or = 8.3 kb in the liver of a GB-agent-infected tamarin by Northern blot hybridization. Sequence analysis indicated that five of the seven clones encode polypeptides that possess limited amino acid identity with the nonstructural proteins of hepatitis C virus. Extension of the sequences found in the seven clones revealed that plasma from an infected tamarin contained two RNA molecules > 9 kb long. Limited sequence identity with various isolates of hepatitis C virus and the relative positions of putative RNA helicases and RNA-dependent RNA polymerases in the predicted protein products of these molecules suggested that the GB agent contains two unique flavivirus-like genomes.
Resumo:
Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype.
Resumo:
The eukaryotic translation initiation factor 4A (eIF4A) is a member of the DEA(D/H)-box RNA helicase family, a diverse group of proteins that couples an ATPase activity to RNA binding and unwinding. Previous work has provided the structure of the amino-terminal, ATP-binding domain of eIF4A. Extending those results, we have solved the structure of the carboxyl-terminal domain of eIF4A with data to 1.75 Å resolution; it has a parallel α-β topology that superimposes, with minor variations, on the structures and conserved motifs of the equivalent domain in other, distantly related helicases. Using data to 2.8 Å resolution and molecular replacement with the refined model of the carboxyl-terminal domain, we have completed the structure of full-length eIF4A; it is a “dumbbell” structure consisting of two compact domains connected by an extended linker. By using the structures of other helicases as a template, compact structures can be modeled for eIF4A that suggest (i) helicase motif IV binds RNA; (ii) Arg-298, which is conserved in the DEA(D/H)-box RNA helicase family but is absent from many other helicases, also binds RNA; and (iii) motifs V and VI “link” the carboxyl-terminal domain to the amino-terminal domain through interactions with ATP and the DEA(D/H) motif, providing a mechanism for coupling ATP binding and hydrolysis with conformational changes that modulate RNA binding.
Resumo:
A yeast gene has been identified by screening for DNA replication mutants using a permeabilized cell replication assay. The mutant is temperature sensitive for growth and shows a cell cycle phenotype typical of DNA replication mutants. RNA synthesis is normal in the mutant but DNA synthesis ceases upon shift to the nonpermissive temperature. The DNA2 gene was cloned by complementation of the dna2ts gene phenotype. The gene is essential for viability. The gene encodes a 172-kDa protein with characteristic DNA helicase motifs. A hemagglutinin epitope-Dna2 fusion protein was prepared and purified by conventional and immunoaffinity chromatography. The purified protein is a DNA-dependent ATPase and has 3' to 5' DNA helicase activity specific for forked substrates. A nuclease activity that endonucleolytically cleaves DNA molecules having a single-stranded 5' tail adjacent to a duplex region copurifies through all steps with the fusion protein.
Resumo:
Ligand-specific molecular switches composed of RNA were created by coupling preexisting catalytic and receptor domains via structural bridges. Binding of ligand to the receptor triggers a conformational change within the bridge, and this structural reorganization dictates the activity of the adjoining ribozyme. The modular nature of these tripartite constructs makes possible the rapid construction of precision RNA molecular switches that trigger only in the presence of their corresponding ligand. By using similar enzyme engineering strategies, new RNA switches can be made to operate as designer molecular sensors or as a new class of genetic control elements.
Resumo:
A vaccinia virus-based RNA expression system enabled high-level cytoplasmic expression of RNA aptamers directed against the intracellular domain of the β2 integrin LFA-1, a transmembrane protein that mediates cell adhesion to intercellular adhesion molecule-1 (ICAM-1). In two different cell types, cytoplasmic expression of integrin-binding aptamers reduced inducible cell adhesion to ICAM-1. The aptamers specifically target, and thereby define, a functional cytoplasmic subdomain important for the regulation of cell adhesion in leukocytes. Our approach of aptamer-controlled blocking of signaling pathways in vivo could potentially be applied wherever targeted modulation of a signal-transduction cascade is desired.
Resumo:
We present evidence that Escherichia coli RNA polymerase β subunit may be a transcriptional activator contact site. Stimulation of the activity of the pR promoter by DnaA protein is necessary for replication of plasmids derived from bacteriophage λ. We found that DnaA activates the pR promoter in vitro. Particular mutations in the rpoB gene were able to suppress negative effects that certain dnaA mutations had on the replication of λ plasmids; this suppression was allele-specific. When a potential DnaA-binding sequence located several base pairs downstream of the pR promoter was scrambled by in vitro mutagenesis, the pR promoter was no longer activated by DnaA both in vivo and in vitro. Therefore, we conclude that DnaA may contact the β subunit of RNA polymerase during activation of the pR promoter. A new classification of prokaryotic transcriptional activators is proposed.
Resumo:
In populations that are small and asexual, mutations with slight negative effects on fitness will drift to fixation more often than in large or sexual populations in which they will be eliminated by selection. If such mutations occur in substantial numbers, the combined effects of long-term asexuality and small population size may result in substantial accumulation of mildly deleterious substitutions. Prokaryotic endosymbionts of animals that are transmitted maternally for very long periods are effectively asexual and experience smaller effective population size than their free-living relatives. The contrast between such endosymbionts and related free-living bacteria allows us to test whether a population structure imposing frequent bottlenecks and asexuality does lead to an accumulation of slightly deleterious substitutions. Here we show that several independently derived insect endosymbionts, each with a long history of maternal transmission, have accumulated destabilizing base substitutions in the highly conserved 16S rRNA. Stabilities of Domain I of this subunit are 15–25% lower in endosymbionts than in closely related free-living bacteria. By mapping destabilizing substitutions onto a reconstructed phylogeny, we show that decreased ribosomal stability has evolved separately in each endosymbiont lineage. Our phylogenetic approach allows us to demonstrate statistical significance for this pattern: becoming endosymbiotic predictably results in decreased stability of rRNA secondary structure.
Resumo:
Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.
Resumo:
The mechanism of mRNA export is a complex issue central to cellular physiology. We characterized previously yeast Gle1p, a protein with a leucine-rich (LR) nuclear export sequence (NES) that is essential for poly(A)+ RNA export in Saccharomyces cerevisiae. To characterize elements of the vertebrate mRNA export pathway, we identified a human homologue of yeast Gle1p and analyzed its function in mammalian cells. hGLE1 encodes a predicted 75-kDa polypeptide with high sequence homology to yeast Gle1p, but hGle1p does not contain a sequence motif matching any of the previously characterized NESs. hGLE1 can complement a yeast gle1 temperature-sensitive export mutant only if a LR-NES is inserted into it. To determine whether hGle1p played a role in nuclear export, anti-hGle1p antibodies were microinjected into HeLa cells. In situ hybridization of injected cells showed that poly(A)+ RNA export was inhibited. In contrast, there was no effect on the nuclear import of a glucocorticoid receptor reporter. We conclude that hGle1p functions in poly(A)+ RNA export, and that human cells facilitate such export with a factor similar to yeast but without a recognizable LR-NES. With hGle1p localized at the nuclear pore complexes, hGle1p is positioned to act at a terminal step in the export of mature RNA messages to the cytoplasm.