54 resultados para RHODOPSIN

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK−/− rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK−/− mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK−/− mice raised in constant darkness. One day of constant light caused the rods in the RK−/− mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein α subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) α subunit C-terminal undecapeptide Gtα(340–350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtα(340–350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an αL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325–346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor–G protein interface is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the gene encoding rhodopsin, the visual pigment in rod photoreceptors, lead to retinal degeneration in species from Drosophila to man. The pathogenic sequence from rod cell-specific mutation to degeneration of rods and cones remains unclear. To understand the disease process in man, we studied heterozygotes with 18 different rhodopsin gene mutations by using noninvasive tests of rod and cone function and retinal histopathology. Two classes of disease expression were found, and there was allele-specificity. Class A mutants lead to severely abnormal rod function across the retina early in life; topography of residual cone function parallels cone cell density. Class B mutants are compatible with normal rods in adult life in some retinal regions or throughout the retina, and there is a slow stereotypical disease sequence. Disease manifests as a loss of rod photoreceptor outer segments, not singly but in microscopic patches that coalesce into larger irregular areas of degeneration. Cone outer segment function remains normal until >75% of rod outer segments are lost. The topography of cone loss coincides with that of rod loss. Most class B mutants show an inferior-nasal to superior-temporal retinal gradient of disease vulnerability associated with visual cycle abnormalities. Class A mutant alleles behave as if cytotoxic; class B mutants can be relatively innocuous and epigenetic factors may play a major role in the retinal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodopsin is a prototypical G protein-coupled receptor that is activated by photoisomerization of its 11-cis-retinal chromophore. Mutant forms of rhodopsin were prepared in which the carboxylic acid counterion was moved relative to the positively charged chromophore Schiff base. Nanosecond time-resolved laser photolysis measurements of wild-type recombinant rhodopsin and two mutant pigments then were used to determine reaction schemes and spectra of their early photolysis intermediates. These results, together with linear dichroism data, yielded detailed structural information concerning chromophore movements during the first microsecond after photolysis. These chromophore structural changes provide a basis for understanding the relative movement of rhodopsin’s transmembrane helices 3 and 6 required for activation of rhodopsin. Thus, early structural changes following isomerization of retinal are linked to the activation of this G protein-coupled receptor. Such rapid structural changes lie at the heart of the pharmacologically important signal transduction mechanisms in a large variety of receptors, which use extrinsic activators, but are impossible to study in receptors using diffusible agonist ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study of the retinitis pigmentosa mutation L125R and two designed mutations at this site, L125A and L125F, showed that these mutations cause partial or total misfolding of the opsins expressed in COS cells from the corresponding mutant opsin genes. We now report on expression and characterization of the opsins from the following retinitis pigmentosa mutants in the transmembrane domain of rhodopsin that correspond to six of the seven helices: G51A and G51V (helix A), G89D (helix B), A164V (helix D), H211P (helix E), P267L and P267R (helix F), and T297R (helix G). All the mutations caused partial misfolding of the opsins as observed by the UV/visible absorption characteristics and by separation of the expressed opsins into fractions that bound 11-cis-retinal to form the corresponding mutant rhodopsins and those that did not bind 11-cis-retinal. Further, all the mutant rhodopsins prepared from the above mutants, except for G51A, showed strikingly abnormal bleaching behavior with abnormal metarhodopsin II photointermediates. The results show that retinitis pigmentosa mutations in every one of the transmembrane helices can cause misfolding of the opsin. Therefore, on the basis of these and previous results, we conclude that defects in the packing of the transmembrane helices resulting from these mutations are relayed to the intradiscal domain, where they cause misfolding of the opsin by inducing the formation of a disulfide bond other than the native Cys-110—Cys-187 disulfide bond. Thus, there is coupling between packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure–function studies of rhodopsin kinase (RK; EC 2.7.1.125) require a variety of mutants. Therefore, there is need for a suitable system for the expression of RK mutant genes. Here we report on a study of expression of the RK gene in baculovirus-infected Sf21 cells and characterization of the enzyme produced as purified to near homogeneity. Particular attention has been paid to the post-translational modifications, autophosphorylation and isoprenylation, found in the native bovine RK. The protein produced has been purified using, successively, heparin-Sepharose, Mono Q, and Mono S FPLC (fast protein liquid chromatography) and was obtained in amounts of about 2 mg from 1 liter of cell culture. The enzyme from the last step of purification was obtained in two main fractions that differ in the level of phosphorylation. The protein peak eluted first carries two phosphate groups per protein, whereas the second protein peak is monophosphorylated. Further, while both peaks are isoprenylated, the isoprenyl groups consist of mixtures of C5, C10, C15, and C20 isoprenyl moieties. From these results, we conclude that the above expression system is suitable for some but not all aspects of structure–function studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key step in signal transduction in the visual cell is the light-induced conformational change of rhodopsin that triggers the binding and activation of the guanine nucleotide-binding protein. Site-directed mAbs against bovine rhodopsin were produced and used to detect and characterize these conformational changes upon light activation. Among several antibodies that bound exclusively to the light-activated state, an antibody (IgG subclass) with the highest affinity (Ka ≈ 6 × 10−9 M) was further purified and characterized. The epitope of this antibody was mapped to the amino acid sequence 304–311. This epitope extends from the central region to the cytoplasmic end of the seventh transmembrane helix and incorporates a part of a highly conserved NPXXY motif, a critical region for signaling and agonist-induced internalization of several biogenic amine and peptide receptors. In the dark state, no binding of the antibody to rhodopsin was detected. Accessibility of the epitope to the antibody correlated with formation of the metarhodopsin II photointermediate and was reduced significantly at the metarhodopsin III intermediate. Further, incubation of the antigen–antibody complex with 11-cis-retinal failed to regenerate the native rhodopsin chromophore. These results suggest significant and reversible conformational changes in close proximity to the cytoplasmic end of the seventh transmembrane helix of rhodopsin that might be important for folding and signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high resolution solution 19F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF3-CH2-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6–10 mg), in dodecylmaltoside, were analyzed at 20°C by solution 19F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for 19F labels at positions 67 (−0.2 ppm) and 140 (−0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution 19F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light triggers the phototransduction cascade by activating the visual pigment rhodopsin (Rho → Rho*). Phosphorylation of Rho* by rhodopsin kinase (RK) is necessary for the fast recovery of sensitivity after intense illumination. Ca2+ ions, acting through Ca2+-binding proteins, have been implicated in the desensitization of phototransduction. One such protein, recoverin, has been proposed to regulate RK activity contributing to adaptation to background illumination in retinal photoreceptor cells. In this report, we describe an in vitro assay system using isolated retinas that is well suited for a variety of biochemical assays, including assessing Ca2+ effects on Rho* phosphorylation. Pieces of bovine retina with intact rod outer segments were treated with pore-forming staphylococcal α-toxin, including an α-toxin mutant that forms pores whose permeability is modulated by Zn2+. The pores formed through the plasma membranes of rod cells permit the diffusion of small molecules <2 kDa but prevent the loss of proteins, including recoverin (25 kDa). The selective permeability of these pores was confirmed by using the small intracellular tracer N-(2-aminoethyl) biotinamide hydrochloride. Application of [γ-32P]ATP to α-toxin-treated, isolated retina allowed us to monitor and quantify phosphorylation of Rho*. Under various experimental conditions, including low and high [Ca2+]free, the same level of Rho* phosphorylation was measured. No differences were observed between low and high [Ca2+]free conditions, even when rods were loaded with ATP and the pores were closed by Zn2+. These results suggest that under physiological conditions, Rho* phosphorylation is insensitive to regulation by Ca2+ and Ca2+-binding proteins, including recoverin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory rhodopsin II (SRII) is a repellent phototaxis receptor in the archaeon Halobacterium salinarum, similar to visual pigments in its seven-helix structure and linkage of retinal to the protein by a protonated Schiff base in helix G. Asp-73 in helix C is shown by spectroscopic analysis to be a counterion to the protonated Schiff base in the unphotolyzed SRII and to be the proton acceptor from the Schiff base during photoconversion to the receptor signaling state. Coexpression of the genes encoding mutated SRII with Asn substituted for Asp-73 (D73N) and the SRII transducer HtrII in H. salinarum cells results in a 3-fold higher swimming reversal frequency accompanied by demethylation of HtrII in the dark, showing that D73N SRII produces repellent signals in its unphotostimulated state. Analogous constitutive signaling has been shown to be produced by the similar neutral residue substitution of the Schiff base counterion and proton acceptor Glu-113 in human rod rhodopsin. The interpretation for both seven-helix receptors is that light activation of the wild-type protein is caused primarily by photoisomerization-induced transfer of the Schiff base proton on helix G to its primary carboxylate counterion on helix C. Therefore receptor activation by helix C–G salt-bridge disruption in the photoactive site is a general mechanism in retinylidene proteins spanning the vast evolutionary distance between archaea and humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature termination of protein synthesis by nonsense mutations is at the molecular origin of a number of inherited disorders in the family of G protein-coupled seven-helix receptor proteins. To understand how such truncated polypeptides are processed by the cell, we have carried out COS-1 cell expression studies of mutants of bovine rhodopsin truncated at the first 1, 1.5, 2, 3, or 5 transmembrane segments (TMS) of the seven present in wild-type opsin. Our experiments show that successful completion of different stages in the cellular processing of the protein [membrane insertion, N-linked glycosylation, stability to proteolytic degradation, and transport from the endoplasmic reticulum (ER) membrane] requires progressively longer lengths of the polypeptide chain. Thus, none of the truncations affected the ability of the polypeptides to be integral membrane proteins. C-terminal truncations that generated polypeptides with fewer than two TMS resulted in misorientation and prevented glycosylation at the N terminus, whereas truncations that generated polypeptides with fewer than five TMS greatly destabilized the protein. However, all of the truncations prevented exit of the polypeptide from the ER. We conclude that during the biogenesis of rhodopsin, proper integration into the ER membrane occurs only after the synthesis of at least two TMS is completed. Synthesis of the next three TMS confers a gradual increase in stability, whereas the presence of more than five TMS is necessary for exit from the ER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cysteine mutagenesis and site-directed spin labeling in the C-terminal region of rhodopsin have been used to probe the local structure and proximity of that region to the cytoplasmic loops. Each of the native amino acids in the sequence T335–T340 was replaced with Cys, one at a time. The sulfhydryl groups of all mutants reacted rapidly with the sulfhydryl reagent 4,4′-dithiodipyridine, which indicated a high degree of solvent accessibility. Furthermore, to probe the proximity relationships, a series of double Cys mutants was constructed. One Cys in all sets was at position 338 and the other was at a position in the sequence S240–V250 in the EF interhelical loop, at position 65 in the AB interhelical loop, or at position 140 in the CD interhelical loop. In the dark state, no significant disulfide formation was observed between C338 and C65 or C140 under the conditions used, whereas a relatively rapid disulfide formation was observed between C338 and C242 or C245. Spin labels in the double Cys mutants showed the strongest magnetic interactions between the nitroxides attached to C338 and C245 or C246. Light activation of the double mutant T242C/S338C resulted in slower disulfide formation, whereas interactions between nitroxides at C338 and C245 or C246 decreased. These results suggest the proximity of the C-terminal residue C338 to residues located on the outer face of a cytoplasmic helical extension of the F helix with an apparent increase of distance upon photoactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Glu-134–Arg-135 residues in rhodopsin, located near the cytoplasmic end of the C helix, are involved in G protein binding, or activation, or both. Furthermore, the charge-neutralizing mutation Glu-134 to Gln-134 produces hyperactivity in the activated state and produces constitutive activity in opsin. The Glu/Asp-Arg charge pair is highly conserved in equivalent positions in other G protein-coupled receptors. To investigate the structural consequences of charge-neutralizing mutations at Glu-134 and Arg-135 in rhodopsin, single spin-labeled side chains were introduced at sites in the cytoplasmic domains of helices C (140), E (227), F (250), or G (316) to serve as “molecular sensors” of the local helix bundle conformation. In each of the spin-labeled rhodopsins, a Gln substitution was introduced at either Glu-134 or Arg-135, and the electron paramagnetic resonance spectrum of the spin label was used to monitor the structural response of the helix bundle. The results indicate that a Gln substitution at Glu-134 induces a photoactivated conformation around helices C and G even in the dark state, an observation of potential relevance to the hyperactivity and constitutive activity of the mutant. In contrast, little change is induced in helix F, which has been shown to undergo a dominant motion upon photoactivation. This result implies that the multiple helix motions accompanying photoactivation are not strongly coupled and can be induced to take place independently. Gln substitution at Arg-135 produces only minor structural changes in the dark- or light-activated conformation, suggesting that this residue is not a determinant of structure in the regions investigated, although it may be functionally important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current standard procedure for preparation of mammalian rhodopsin mutants, transfected COS-1 cells expressing the mutant opsin genes are treated with 5 μM 11-cis-retinal before detergent solubilization for purification. We found that binding of 11-cis-retinal to opsin mutants with single amino acid changes at Trp-265 (W265F,Y,A) and a retinitis pigmentosa mutant (A164V) was far from complete and required much higher concentrations of 11-cis-retinal. By isolation of the expressed opsins in a stable form, kinetic studies of retinal binding to the opsins in vitro have been carried out by using defined phospholipid–detergent mixtures. The results show wide variation in the rates of 11-cis-retinal binding. Thus, the in vitro reconstitution procedure serves as a probe of the retinal-binding pocket in the opsins. Further, a method is described for purification and characterization of the rhodopsin mutants after retinal binding to the opsins in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disulfide bond between Cys-110 and Cys-187 in the intradiscal domain is required for correct folding in vivo and function of mammalian rhodopsin. Misfolding in rhodopsin, characterized by the loss of ability to bind 11-cis-retinal, has been shown to be caused by an intradiscal disulfide bond different from the above native disulfide bond. Further, naturally occurring single mutations of the intradiscal cysteines (C110F, C110Y, and C187Y) are associated with retinitis pigmentosa (RP). To elucidate further the role of every one of the three intradiscal cysteines, mutants containing single-cysteine replacements by alanine residues and the above three RP mutants have been studied. We find that C110A, C110F, and C110Y all form a disulfide bond between C185 and C187 and cause loss of retinal binding. C185A allows the formation of a C110–C187 disulfide bond, with wild-type-like rhodopsin phenotype. C187A forms a disulfide bond between C110 and C185 and binds retinal, and the pigment formed has markedly altered bleaching behavior. However, the opsin from the RP mutant C187Y forms no rhodopsin chromophore.