2 resultados para RENAL SURVIVAL
em National Center for Biotechnology Information - NCBI
Resumo:
Selective inhibition of T cell costimulation using the B7-specific fusion protein CTLA4-Ig has been shown to induce long-term allograft survival in rodents. Antibodies preventing the interaction between CD40 and its T cell-based ligand CD154 (CD40L) have been shown in rodents to act synergistically with CTLA4-Ig. It has thus been hypothesized that these agents might be capable of inducing long-term acceptance of allografted tissues in primates. To test this hypothesis in a relevant preclinical model, CTLA4-Ig and the CD40L-specific monoclonal antibody 5C8 were tested in rhesus monkeys. Both agents effectively inhibited rhesus mixed lymphocyte reactions, but the combination was 100 times more effective than either drug alone. Renal allografts were transplanted into nephectomized rhesus monkeys shown to be disparate at major histocompatibility complex class I and class II loci. Control animals rejected in 5–8 days. Brief induction doses of CTLA4-Ig or 5C8 alone significantly prolonged rejection-free survival (20–98 days). Two of four animals treated with both agents experienced extended (>150 days) rejection-free allograft survival. Two animals treated with 5C8 alone and one animal treated with both 5C8 and CTLA4-Ig experienced late, biopsy-proven rejection, but a repeat course of their induction regimen successfully restored normal graft function. Neither drug affected peripheral T cell or B cell counts. There were no clinically evident side effects or rejections during treatment. We conclude that CTLA4-Ig and 5C8 can both prevent and reverse acute allograft rejection, significantly prolonging the survival of major histocompatibility complex-mismatched renal allografts in primates without the need for chronic immunosuppression.
Resumo:
Blocking CD28-B7 T-cell costimulation by systemic administration of CTLA4Ig, a fusion protein which binds B7 molecules on the surface of antigen-presenting cells, prevents rejection and induces tolerance in experimental acute allograft rejection models. We tested the effect of CTLA4Ig therapy on the process of chronic renal allograft rejection using an established experimental transplantation model. F344 kidneys were transplanted orthotopically into bilaterally nephrectomized LEW recipients. Control animals received low dose cyclosporine for 10 days posttransplantation. Administration of a single injection of CTLA4Ig on day 2 posttransplant alone or in addition to the low dose cyclosporine protocol resulted in improvement of long-term graft survival as compared with controls. More importantly, control recipients which received cyclosporine only developed progressive proteinuria by 8-12 weeks, and morphological evidence of chronic rejection by 16-24 weeks, including widespread transplant arteriosclerosis and focal and segmental glomerulosclerosis, while animals treated with CTLA4Ig alone or in addition to cyclosporine did not. Competitive reverse transcriptase-PCR and immunohistological analysis of allografts at 8, 16, and 24 weeks showed attenuation of lymphocyte and macrophage infiltration and activation in the CTLA4Ig-treated animals, as compared with cyclosporine-alone treated controls. These data confirm that early blockade of the CD28-B7 T-cell costimulatory pathway prevents later development and evolution of chronic renal allograft rejection. Our results indicate that T-cell recognition of alloantigen is a central event in initiating the process of chronic rejection, and that strategies targeted at blocking T-cell costimulation may prove to be a valuable clinical approach to preventing development of the process.