24 resultados para RECOMBINANTS

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathogenicity of poliovirus can be attenuated by mutations in the internal ribosomal entry site (IRES) within the 5' nontranslated region of its genome. The Sabin vaccine strains used in prevention of poliomyelitis carry such mutations in their IRES elements. In addition, mutations within the structural and nonstructural proteins of Sabin strains may equally contribute to the attenuation phenotype. Despite their effectiveness as vaccines, the Sabin strains retain a neuropathogenic potential in animal models for poliomyelitis and, at a very low rate, they can cause poliomyelitis in vaccine recipients. The elimination of the neurocytopathic phenotype was achieved through the exchange of the entire poliovirus IRES with its counterpart from human rhinovirus type 2 without affecting growth properties in nonneuronal cells. The attenuating effect of the human rhinovirus type 2 IRES within the context of a poliovirus genome has been mapped to the 3' portion of this genetic element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic mapping of traits and mutations in mammals is dependent upon linkage analysis. The resolution achieved by this method is related to the number of offspring that can be scored and position of crossovers near a gene. Higher precision mapping is obtained by expanding the collection of progeny from an appropriate cross, which in turn increases the number of potentially informative recombinants. A more efficient approach would be to increase the frequency of recombination, rather than the number of progeny. The anticancer drug cisplatin, which causes DNA strand breakage and is highly recombinogenic in some model organisms, was tested for its ability to induce germ-line recombination in mice. Males were exposed to cisplatin and mated at various times thereafter to monitor the number of crossovers inherited by offspring. We observed a striking increase on all three chromosomes examined and established a regimen that nearly doubled crossover frequency. The timing of the response indicated that the crossovers were induced at the early pachytene stage of meiosis I. The ability to increase recombination should facilitate genetic mapping and positional cloning in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriophage λ encodes a number of genes involved in the recombinational repair of DNA double-strand breaks. The product of one of these genes, rap, has been purified. Truncated Rap proteins that copurify with the full-length form are derived, at least in part, from a ρ-dependent transcription terminator located within its coding sequence. Full-length and certain truncated Rap polypeptides bind preferentially to branched DNA substrates, including synthetic Holliday junctions and D-loops. In the presence of manganese ions, Rap acts as an endonuclease that cleaves at the branch point of Holliday and D-loop substrates. It shows no obvious sequence preference or symmetry of cleavage on a Holliday junction. The biochemical analysis of Rap gives an insight into how recombinants could be generated by the nicking of a D-loop without the formation of a classical Holliday junction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strategy employing gene-trap mutagenesis and site-specific recombination (Cre/loxP) has been developed to isolate genes that are transcriptionally activated during programmed cell death. Interleukin-3 (IL-3)-dependent hematopoietic precursor cells (FDCP1) expressing a reporter plasmid that codes for herpes simplex virus–thymidine kinase, neomycin phosphotransferase, and murine IL-3 were transduced with a retroviral gene-trap vector carrying coding sequences for Cre-recombinase (Cre) in the U3 region. Activation of Cre expression from integrations into active genes resulted in a permanent switching between the selectable marker genes that converted the FDCP1 cells to factor independence. Selection for autonomous growth yielded recombinants in which Cre sequences in the U3 region were expressed from upstream cellular promoters. Because the expression of the marker genes is independent of the trapped cellular promoter, genes could be identified that were transiently induced by IL-3 withdrawal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic recombination of plus-strand RNA viruses is an important process for promoting genetic variation. By using genetically marked poliovirus RNAs, we have demonstrated that genetic recombination can occur in a cell-free system that generates infective virus from added poliovirus RNA. Recombinant polioviruses were isolated, and the region of crossing over was roughly mapped. Recombinants could be isolated even under conditions where the yield of viruses from one of the parental RNAs was depressed to levels comparable to or less than the yield of recombinant viruses, an observation suggesting that only one of the recombining RNAs needs to be replication-competent. The generation of poliovirus recombinants in a cell-free system offers new possibilities for studying recombination and evolution of RNA viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homologous DNA recombination is a fundamental, regenerative process within living organisms. However, in most organisms, homologous recombination is a rare event, requiring a complex set of reactions and extensive homology. We demonstrate in this paper that Beta protein of phage λ generates recombinants in chromosomal DNA by using synthetic single-stranded DNAs (ssDNA) as short as 30 bases long. This ssDNA recombination can be used to mutagenize or repair the chromosome with efficiencies that generate up to 6% recombinants among treated cells. Mechanistically, it appears that Beta protein, a Rad52-like protein, binds and anneals the ssDNA donor to a complementary single-strand near the DNA replication fork to generate the recombinant. This type of homologous recombination with ssDNA provides new avenues for studying and modifying genomes ranging from bacterial pathogens to eukaryotes. Beta protein and ssDNA may prove generally applicable for repairing DNA in many organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crossing over by homologous recombination between monomeric circular chromosomes generates dimeric circular chromosomes that cannot be segregated to daughter cells during cell division. In Escherichia coli, homologous recombination is biased so that most homologous recombination events generate noncrossover monomeric circular chromosomes. This bias is lost in ruv mutants. A novel protein, RarA, which is highly conserved in eubacteria and eukaryotes and is related to the RuvB and the DnaX proteins, γ and τ, may influence the formation of crossover recombinants. Those dimeric chromosomes that do form are converted to monomers by Xer site-specific recombination at the recombination site dif, located in the replication terminus region of the E. coli chromosome. The septum-located FtsK protein, which coordinates cell division with chromosome segregation, is required for a complete Xer recombination reaction at dif. Only correctly positioned dif sites present in a chromosomal dimer are able to access septum-located FtsK. FtsK acts by facilitating a conformational change in the Xer recombination Holliday junction intermediate formed by XerC recombinase. This change provides a substrate for XerD, which then completes the recombination reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic instability can be induced by unusual DNA structures and sequence repeats. We have previously demonstrated that a large palindrome in the mouse germ line derived from transgene integration is extremely unstable and undergoes stabilizing rearrangements at high frequency, often through deletions that produce asymmetry. We have now characterized other palindrome rearrangements that arise from complex homologous recombination events. The structure of the recombinants is consistent with homologous recombination occurring by a noncrossover gene conversion mechanism in which a break induced in the palindrome promotes homologous strand invasion and repair synthesis, similar to mitotic break repair events reported in mammalian cells. Some of the homologous recombination events led to expansion in the size of the palindromic locus, which in the extreme case more than doubled the number of repeats. These results may have implications for instability observed at naturally occurring palindromic or quasipalindromic sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basic research in Epstein-Barr virus (EBV) molecular genetics has provided means to maintain episomes in human cells, to efficiently deliver episomes with up to 150 kbp of heterologous DNA to human B lymphocytes, and to immortalize human B lymphocytes with EBV recombinants that can maintain up to 120 kbp of heterologous DNA. Episome maintenance requires an EBV nuclear protein, EBNA1, whereas immortalization of cells with EBV recombinants requires EBNA1, EBNA2, EBNA3A, EBNA3C, EBNALP, and LMP1. EBV-derived vectors are useful for experimental genetic reconstitution in B lymphocytes, a cell type frequently used in establishing repositories of human genetic deficiencies. The ability of EBV-infected cells to establish a balanced state of persistence in normal humans raises the possibility that cells infected with EBV recombinants could be useful for genetic reconstitution, in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant pox viruses have been generated for vaccination against heterologous pathogens. Amongst these, the following are notable examples. (i) The engineering of the Copenhagen strain of vaccinia virus to express the rabies virus glycoprotein. When applied in baits, this recombinant has been shown to vaccinate the red fox in Europe and raccoons in the United States, stemming the spread of rabies virus infection in the wild. (ii) A fowlpox-based recombinant expressing the Newcastle disease virus fusion and hemagglutinin glycoproteins has been shown to protect commercial broiler chickens for their lifetime when the vaccine was administered at 1 day of age, even in the presence of maternal immunity against either the Newcastle disease virus or the pox vector. (iii) Recombinants of canarypox virus, which is restricted for replication to avian species, have provided protection against rabies virus challenge in cats and dogs, against canine distemper virus, feline leukemia virus, and equine influenza virus disease. In humans, canarypox virus-based recombinants expressing antigens from rabies virus, Japanese encephalitis virus, and HIV have been shown to be safe and immunogenic. (iv) A highly attenuated vaccinia derivative, NYVAC, has been engineered to express antigens from both animal and human pathogens. Safety and immunogenicity of NYVAC-based recombinants expressing the rabies virus glycoprotein, a polyprotein from Japanese encephalitis virus, and seven antigens from Plasmodium falciparum have been demonstrated to be safe and immunogenic in early human vaccine studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous study we demonstrated that vesicular stomatitis virus (VSV) can be used as a vector to express a soluble protein in mammalian cells. Here we have generated VSV recombinants that express four different membrane proteins: the cellular CD4 protein, a CD4-G hybrid protein containing the ectodomain of CD4 and the transmembrane and cytoplasmic tail of the VSV glycoprotein (G), the measles virus hemagglutinin, or the measles virus fusion protein. The proteins were expressed at levels ranging from 23-62% that of VSV G protein and all were transported to the cell surface. In addition we found that all four proteins were incorporated into the membrane envelope of VSV along with the VSV G protein. The levels of incorporation of these proteins varied from 6-31% of that observed for VSV G. These results suggest that many different membrane proteins may be co-incorporated quite efficiently with VSV G protein into budding VSV virus particles and that specific signals are not required for this co-incorporation process. In fact, the CD4-G protein was incorporated with the same efficiency as wild type CD4. Electron microscopy of virions containing CD4 revealed that the CD4 molecules were dispersed throughout the virion envelope among the trimeric viral spike glycoproteins. The recombinant VSV-CD4 virus particles were about 18% longer than wild type virions, reflecting the additional length of the helical nucleocapsid containing the extra gene. Recombinant VSVs carrying foreign antigens on the surface of the virus particle may be useful for viral targeting, membrane protein purification, and for generation of immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The x-ray sensitive hamster cell line xrs-6 is deficient in DNA double-strand break (DSB) repair and exhibits impaired V(D)J recombination. The molecular defect in this line is in the 80-kDa subunit of the Ku autoantigen, a protein that binds to DNA ends and recruits the DNA-dependent protein kinase to DNA. Using an I-SceI endonuclease expression system, chromosomal DSB repair was examined in xrs-6 and parental CHO-K1 cell lines. A DSB in chromosomal DNA increased the yield of recombinants several thousand-fold above background in both the xrs-6 and CHO-K1 cells, with recombinational repair of DSBs occurring in as many as 1 of 100 cells electroporated with the endonuclease expression vector. Thus, recombinational repair of chromosomal DSBs can occur at substantial levels in mammalian cells and it is not grossly affected in our assay by a deficiency of the Ku autoantigen. Rejoining of broken chromosome ends (end-joining) near the site of the DSB was also examined. In contrast to recombinational repair, end-joining was found to be severely impaired in the xrs-6 cells. Thus, the Ku protein appears to play a critical role in only one of the chromosomal DSB repair pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zip1 is a yeast synaptonemal complex (SC) central region component and is required for normal meiotic recombination and crossover interference. Physical analysis of meiotic recombination in a zip1 mutant reveals the following: Crossovers appear later than normal and at a reduced level. Noncrossover recombinants, in contrast, seem to appear in two phases: (i) a normal number appear with normal timing and (ii) then additional products appear late, at the same time as crossovers. Also, Holliday junctions are present at unusually late times, presumably as precursors to late-appearing products. Red1 is an axial structure component required for formation of cytologically discernible axial elements and SC and maximal levels of recombination. In a red1 mutant, crossovers and noncrossovers occur at coordinately reduced levels but with normal timing. If Zip1 affected recombination exclusively via SC polymerization, a zip1 mutation should confer no recombination defect in a red1 strain background. But a red1 zip1 double mutant exhibits the sum of the two single mutant phenotypes, including the specific deficit of crossovers seen in a zip1 strain. We infer that Zip1 plays at least one role in recombination that does not involve SC polymerization along the chromosomes. Perhaps some Zip1 molecules act first in or around the sites of recombinational interactions to influence the recombination process and thence nucleate SC formation. We propose that a Zip1-dependent, pre-SC transition early in the recombination reaction is an essential component of meiotic crossover control. A molecular basis for crossover/noncrossover differentiation is also suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a general way of introducing transgenes into the mouse germ line for comparing different sequences without the complications of variation in copy number and insertion site. The method uses homologous recombination in embryonic stem (ES) cells to generate mice having a single copy of a transgene integrated into a chosen location in the genome. To test the method, a single copy murine bcl-2 cDNA driven by either a chicken beta-actin promoter or a human beta-actin promoter has been inserted immediately 5' to the X-linked hypoxanthine phosphoribosyltransferase locus by a directly selectable homologous recombination event. The level of expression of the targeted bcl-2 transgene in ES cells is identical in independently isolated homologous recombinants having the same promoter yet varies between the different promoters. In contrast, the expression of bcl-2 transgenes having the same (chicken beta-actin) promoter varies drastically when they are independently integrated at random insertion sites. Both promoters direct broad expression of the single-copy transgene in mice derived from the respective targeted ES cells. In vitro and in vivo, the human beta-actin promoter consistently directed a higher level of transgene expression than the chicken beta-actin promoter.