7 resultados para RARx-PLZF

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BTB domain (also known as the POZ domain) is an evolutionarily conserved protein–protein interaction motif found at the N terminus of 5–10% of C2H2-type zinc-finger transcription factors, as well as in some actin-associated proteins bearing the kelch motif. Many BTB proteins are transcriptional regulators that mediate gene expression through the control of chromatin conformation. In the human promyelocytic leukemia zinc finger (PLZF) protein, the BTB domain has transcriptional repression activity, directs the protein to a nuclear punctate pattern, and interacts with components of the histone deacetylase complex. The association of the PLZF BTB domain with the histone deacetylase complex provides a mechanism of linking the transcription factor with enzymatic activities that regulate chromatin conformation. The crystal structure of the BTB domain of PLZF was determined at 1.9 Å resolution and reveals a tightly intertwined dimer with an extensive hydrophobic interface. Approximately one-quarter of the monomer surface area is involved in the dimer intermolecular contact. These features are typical of obligate homodimers, and we expect the full-length PLZF protein to exist as a branched transcription factor with two C-terminal DNA-binding regions. A surface-exposed groove lined with conserved amino acids is formed at the dimer interface, suggestive of a peptide-binding site. This groove may represent the site of interaction of the PLZF BTB domain with nuclear corepressors or other nuclear proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoic acid receptors (RARs) are hormone-regulated transcription factors that control key aspects of normal differentiation. Aberrant RAR activity may be a causal factor in neoplasia. Human acute promyelocytic leukemia, for example, is tightly linked to chromosomal translocations that fuse novel amino acid sequences (denoted PML, PLZF, and NPM) to the DNA-binding and hormone-binding domains of RARα. The resulting chimeric receptors have unique transcriptional properties that may contribute to leukemogenesis. Normal RARs repress gene transcription by associating with ancillary factors denoted corepressors (also referred to as SMRT, N-CoR, TRAC, or RIP13). We report here that the PML-RARα and PLZF-RARα oncoproteins retain the ability of RARα to associate with corepressors, and that this corepressor association correlates with certain aspects of the leukemic phenotype. Unexpectedly, the PLZF moiety itself can interact with SMRT corepressor. This interaction with corepressor is mediated, in part, by a POZ motif within PLZF. Given the presence of POZ motifs in a number of known transcriptional repressors, similar interactions with SMRT may play a role in transcriptional silencing by a variety of both receptor and nonreceptor transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In acute promyelocytic leukemia (APL), the typical t(15;17) and the rare t(11;17) translocations express, respectively, the PML/RARα and PLZF/RARα fusion proteins (where RARα is retinoic acid receptor α). Herein, we demonstrate that the PLZF and PML proteins interact with each other and colocalize onto nuclear bodies (NBs). Furthermore, induction of PML expression by interferons leads to a recruitment of PLZF onto NBs without increase in the levels of the PLZF protein. PML/RARα and PLZF/RARα localize to the same microspeckled nuclear domains that appear to be common targets for the two fusion proteins in APL. Although PLZF/RARα does not affect the localization of PML, PML/RARα delocalizes the endogenous PLZF protein in t(15;17)-positive NB4 cells, pointing to a hierarchy in the nuclear targeting of these proteins. Thus, our results unify the molecular pathogenesis of APL with at least two different RARα gene translocations and stress the importance of alterations of PLZF and RARα nuclear localizations in this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with chromosomal translocations always involving the RARα gene, which variably fuses to one of several distinct loci, including PML or PLZF (X genes) in t(15;17) or t(11;17), respectively. APL in patients harboring t(15;17) responds well to retinoic acid (RA) treatment and chemotherapy, whereas t(11;17) APL responds poorly to both treatments, thus defining a distinct syndrome. Here, we show that RA, As2O3, and RA + As2O3 prolonged survival in either leukemic PML-RARα transgenic mice or nude mice transplanted with PML-RARα leukemic cells. RA + As2O3 prolonged survival compared with treatment with either drug alone. In contrast, neither in PLZF-RARα transgenic mice nor in nude mice transplanted with PLZF-RARα cells did any of the three regimens induce complete disease remission. Unexpectedly, therapeutic doses of RA and RA + As2O3 can induce, both in vivo and in vitro, the degradation of either PML-RARα or PLZF-RARα proteins, suggesting that the maintenance of the leukemic phenotype depends on the continuous presence of the former, but not the latter. Our findings lead to three major conclusions with relevant therapeutic implications: (i) the X-RARα oncoprotein directly determines response to treatment and plays a distinct role in the maintenance of the malignant phenotype; (ii) As2O3 and/or As2O3 + RA combination may be beneficial for the treatment of t(15;17) APL but not for t(11;17) APL; and (iii) therapeutic strategies aimed solely at degrading the X-RARα oncoprotein may not be effective in t(11;17) APL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypermethylated in cancer (HIC-1), a new candidate tumor suppressor gene located in 17p13.3, encodes a protein with five C2H2 zinc fingers and an N-terminal broad complex, tramtrack, and bric à brac/poxviruses and zinc-finger (BTB/POZ) domain found in actin binding proteins or transcriptional regulators involved in chromatin modeling. In the human B cell lymphoma (BCL-6) and promyelocityc leukemia (PLZF) oncoproteins, this domain mediates transcriptional repression through its ability to recruit a silencing mediator of retinoid and thyroid hormone receptor (SMRT)/nuclear receptor corepressor (N-CoR)-mSin3A-histone deacetylase (HDAC) complex, a mechanism shared with numerous transcription factors. HIC-1 appears unique because it contains a 13-aa insertion acquired late in evolution, because it is not found in its avian homologue, γF1-binding protein isoform B (γFBP-B), a transcriptional repressor of the γF-crystallin gene. This insertion, located in a conserved region involved in the dimerization and scaffolding of the BTB/POZ domain, mainly affects slightly the ability of the HIC-1 and γFBP-B BTB/POZ domains to homo- and heterodimerize in vivo, as shown by mammalian two-hybrid experiments. Both the HIC-1 and γFBP-B BTB/POZ domains behave as autonomous transcriptional repression domains. However, in striking contrast with BCL-6 and PLZF, both HIC-1 and γFBP-B similarly fail to interact with members of the HDAC complexes (SMRT/N-CoR, mSin3A or HDAC-1) in vivo and in vitro. In addition, a general and specific inhibitor of HDACs, trichostatin A, did not alleviate the HIC-1- and γFBP-B-mediated transcriptional repression, as previously shown for BCL-6. Taken together, our studies show that the recruitment onto target promoters of an HDAC complex is not a general property of transcriptional repressors containing a conserved BTB/POZ domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and one of four fusion partners: PML, PLZF, NPM, and NuMA genes. To study the leukemogenic potential of the fusion genes in vivo, we generated transgenic mice with PLZF–RARα and NPM–RARα. PLZF–RARα transgenic animals developed chronic myeloid leukemia-like phenotypes at an early stage of life (within 3 months in five of six mice), whereas three NPM–RARα transgenic mice showed a spectrum of phenotypes from typical APL to chronic myeloid leukemia relatively late in life (from 12 to 15 months). In contrast to bone marrow cells from PLZF–RARα transgenic mice, those from NPM–RARα transgenic mice could be induced to differentiate by all-trans-retinoic acid (ATRA). We also studied RARE binding properties and interactions between nuclear corepressor SMRT and various fusion proteins in response to ATRA. Dissociation of SMRT from different receptors was observed at ATRA concentrations of 0.01 μM, 0.1 μM, and 1.0 μM for RARα–RXRα, NPM–RARα, and PML–RARα, respectively, but not observed for PLZF–RARα even in the presence of 10 μM ATRA. We also determined the expression of the tissue factor gene in transgenic mice, which was detected only in bone marrow cells of mice expressing the fusion genes. These data clearly establish the leukemogenic role of PLZF–RARα and NPM–RARα and the importance of fusion receptor/corepressor interactions in the pathogenesis as well as in determining different clinical phenotypes of APL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARalpha), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominant-negative effect against the wild-type RARalpha/retinoid X receptor alpha (RXRalpha). We now show that its N-terminal region (called the POZ-domain), which mediates protein-protein interaction as well as specific nuclear localization of the wild-type PLZF and chimeric PLZF-RARalpha proteins, is primarily responsible for this activity. To further investigate the mechanisms of PLZF-RARalpha action, we have also studied its ligand-receptor, protein-protein, and protein-DNA interaction properties and compared them with those of the promyelocytic leukemia gene (PML)-RARalpha, which is expressed in the majority of APLs as a result of t(15;17) translocation. PLZF-RARalpha and PML-RARalpha have essentially the same ligand-binding affinities and can bind in vitro to retinoic acid response elements (RAREs) as homodimers or heterodimers with RXRalpha. PLZF-RARalpha homodimerization and heterodimerization with RXRalpha were primarily mediated by the POZ-domain and RARalpha sequence, respectively. Despite having identical RARalpha sequences, PLZF-RARalpha and PML-RARalpha homodimers recognized with different affinities distinct RAREs. Furthermore, PLZF-RARalpha could heterodimerize in vitro with the wild-type PLZF, suggesting that it may play a role in leukemogenesis by antagonizing actions of not only the retinoid receptors but also the wild-type PLZF and possibly other POZ-domain-containing regulators. These different protein-protein interactions and the target gene specificities of PLZF-RARalpha and PML-RARalpha may underlie, at least in part, the apparent resistance of APL with t(11;17) to differentiation effects of all-trans-retinoic acid.