7 resultados para Quotient Modules

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using sensitive homology-search and gene-finding programs, we have found that a genomic region from the tip of the short arm of human chromosome 16 (16p13.3) encodes a putative secreted protein consisting of a domain related to the whey acidic protein (WAP) domain, a domain homologous with follistatin modules of the Kazal-domain family (FS module), an immunoglobulin-related domain (Ig domain), two tandem domains related to Kunitz-type protease inhibitor modules (KU domains), and a domain belonging to the recently defined NTR-module family (NTR domain). The gene encoding these WAP, FS, Ig, KU, and NTR modules (hereafter referred to as the WFIKKN gene) is intron-depleted—its single 1,157-bp intron splits the WAP module. The validity of our gene prediction was confirmed by sequencing a WFIKKN cDNA cloned from a lung cDNA library. Studies on the tissue-expression pattern of the WFIKKN gene have shown that the gene is expressed primarily in pancreas, kidney, liver, placenta, and lung. As to the function of the WFIKKN protein, it is noteworthy that it contains FS, WAP, and KU modules, i.e., three different module types homologous with domains frequently involved in inhibition of serine proteases. The protein also contains an NTR module, a domain type implicated in inhibition of zinc metalloproteinases of the metzincin family. On the basis of its intriguing homologies, we suggest that the WFIKKN protein is a multivalent protease inhibitor that may control the action of multiple types of serine proteases as well as metalloproteinase(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural changes accompanying stretch-induced early unfolding events were investigated for the four type III fibronectin (FN-III) modules, FN-III7, FN-III8, FN-III9, and FN-III10 by using steered molecular dynamics. Simulations revealed that two main energy barriers, I and II, have to be overcome to initiate unraveling of FN-III's tertiary structure. In crossing the first barrier, the two opposing β-sheets of FN-III are rotated against each other such that the β-strands of both β-sheets align parallel to the force vector (aligned state). All further events in the unfolding pathway proceed from this intermediate state. A second energy barrier has to be overcome to break the first major cluster of hydrogen bonds between adjacent β-strands. Simulations revealed that the height of barrier I varied significantly among the four modules studied, being largest for FN-III7 and lowest for FN-III10, whereas the height of barrier II showed little variation. Key residues affecting the mechanical stability of FN-III modules were identified. These results suggest that FN-III modules can be prestretched into an intermediate state with only minor changes to their tertiary structures. FN-III10, for example, extends 12 Å from the native “twisted” to the intermediate aligned state, and an additional 10 Å from the aligned state to further unfolding where the first β-strand is peeled away. The implications of the existence of intermediate states regarding the elasticity of fibrillar fibers and the stretch-induced exposure of cryptic sites are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foldons, which are kinetically competent, quasi-independently folding units of a protein, may be defined using energy landscape analysis. Foldons can be identified by maxima in a scan of the ratio of a contiguous segment's energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. The predicted foldons are compared with the exons and structural modules for 16 of the 30 proteins studied. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules, but there are marked sequence-dependent effects. There is only a weak correlation of foldons to exons. For gammaII-crystallin, myoglobin, barnase, alpha-lactalbumin, and cytochrome c the foldons and some noncontiguous clusters of foldons compare well with intermediates observed in experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The WW domain has previously been described as a motif of 38 semiconserved residues found in seemingly unrelated proteins, such as dystrophin, Yes-associated protein (YAP), and two transcriptional regulators, Rsp-5 and FE65. The molecular function of the WW domain has been unknown until this time. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP, which we named WBP-1 and WBP-2. Peptide sequence comparison between the two partial clones revealed a homologous region consisting of a proline-rich domain followed by a tyrosine residue (with the shared sequence PPPPY), which we shall call the PY motif. Binding assays and site-specific mutagenesis have shown that the PY motif binds with relatively high affinity and specificity to the WW domain of YAP, with the preliminary consensus XPPXY being critical for binding. Herein, we have implicated the WW domain with a role in mediating protein-protein interactions, as a variant of the paradigm set by Src homology 3 domains and their proline-rich ligands.