3 resultados para Queen Maria I

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our research team and laboratories have concentrated on two inherited endocrine disorders, congenital adrenal hyperplasia (CAH) and apparent mineralocorticoid excess, in thier investigations of the pathophysiology of adrenal steroid hormone disorders in children. CAH refers to a family of inherited disorders in which defects occur in one of the enzymatic steps required to synthesize cortisol from cholesterol in the adrenal gland. Because of the impaired cortisol secretion, adrenocorticotropic hormone levels rise due to impairment of a negative feedback system, which results in hyperplasia of the adrenal cortex. The majority of cases is due to 21-hydroxylase deficiency (21-OHD). Owing to the blocked enzymatic step, cortisol precursors accumulate in excess and are converted to potent androgens, which are secreted and cause in utero virilization of the affected female fetus genitalia in the classical form of CAH. A mild form of the 21-OHD, termed nonclassical 21-OHD, is the most common autosomal recessive disorder in humans, and occurs in 1/27 Ashkenazic Jews. Mutations in the CYP21 gene have been identified that cause both classical and nonclassical CAH. Apparent mineralocorticoid excess is a potentially fatal genetic disorder causing severe juvenile hypertension, pre- and postnatal growth failure, and low to undetectable levels of potassium, renin, and aldosterone. It is caused by autosomal recessive mutations in the HSD11B2 gene, which result in a deficiency of 11β-hydroxysteroid dehydrogenase type 2. In 1998, we reported a mild form of this disease, which may represent an important cause of low-renin hypertension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

“TKO” is an expression vector that knocks out the activity of a transcription factor in vivo under genetic control. We describe a successful test of this concept that used a sea urchin transcription factor of known function, P3A2, as the target. The TKO cassette employs modular cis-regulatory elements to express an encoded single-chain antibody that prevents the P3A2 protein from binding DNA in vivo. In normal development, one of the functions of the P3A2 transcription factor is to repress directly the expression of the CyIIIa cytoskeletal actin gene outside the aboral ectoderm of the embryo. Ectopic expression in oral ectoderm occurs if P3A2 sites are deleted from CyIIIa expression constructs, and we show here that introduction of an αP3A2⋅TKO expression cassette causes exactly the same ectopic oral expression of a coinjected wild-type CyIIIa construct. Furthermore, the αP3A2⋅TKO cassette derepresses the endogenous CyIIIa gene in the oral ectoderm and in the endoderm. αP3A2⋅TKO thus abrogates the function of the endogenous SpP3A2 transcription factor with respect to spatial repression of the CyIIIa gene. Widespread expression of αP3A2⋅TKO in the endoderm has the additional lethal effect of disrupting morphogenesis of the archenteron, revealing a previously unsuspected function of SpP3A2 in endoderm development. In principle, TKO technology could be utilized for spatially and temporally controlled blockade of any transcription factor in any biological system amenable to gene transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unlike many pathogens that are overtly toxic to their hosts, the primary virulence determinant of Mycobacterium tuberculosis appears to be its ability to persist for years or decades within humans in a clinically latent state. Since early in the 20th century latency has been linked to hypoxic conditions within the host, but the response of M. tuberculosis to a hypoxic signal remains poorly characterized. The M. tuberculosis α-crystallin (acr) gene is powerfully and rapidly induced at reduced oxygen tensions, providing us with a means to identify regulators of the hypoxic response. Using a whole genome microarray, we identified >100 genes whose expression is rapidly altered by defined hypoxic conditions. Numerous genes involved in biosynthesis and aerobic metabolism are repressed, whereas a high proportion of the induced genes have no known function. Among the induced genes is an apparent operon that includes the putative two-component response regulator pair Rv3133c/Rv3132c. When we interrupted expression of this operon by targeted disruption of the upstream gene Rv3134c, the hypoxic regulation of acr was eliminated. These results suggest a possible role for Rv3132c/3133c/3134c in mycobacterial latency.