2 resultados para Quaternary Rainforest, Palaeoclimate, U-Th Dating, Megafauna, Australia

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical and isotopic compositions of oceanic biogenic and authigenic minerals contain invaluable information on the evolution of seawater, hence on the history of interaction between tectonics, climate, ocean circulation, and the evolution of life. Important advances and greater understanding of (a) key minor and trace element cycles with various residence times, (b) isotopic sources and sinks and fractionation behaviors, and (c) potential diagenetic problems, as well as developments in high-precision instrumentation, recently have been achieved. These advances provided new compelling evidence that neither gradualism nor uniformitarianism can explain many of the new important discoveries obtained from the chemistry and isotopic compositions of oceanic minerals. Presently, the best-developed geochemical proxies in biogenic carbonates are 18O/16O and Sr/Ca ratios (possibly Mg/Ca) for temperature; 87Sr/86Sr for input sources, Cd/Ca and Ba/Ca ratios for phosphate and alkalinity concentrations, respectively, thus also for ocean circulation; 13C/12C for ocean productivity; B isotopes for seawater pH;, U, Th isotopes, and 14C for dating; and Sr and Mn concentrations for diagenesis. The oceanic authigenic minerals most widely used for chemical paleoceanography are barite, evaporite sulfates, and hydrogenous ferromanganese nodules. Marine barite is an effective alternative monitor of seawater 87Sr/86Sr, especially where carbonates are diagenetically altered or absent. It also provides a high-resolution record of seawater sulfate S isotopes, (evaporite sulfates only carry an episodic record), with new insights on factors affecting the S and C cycles and atmospheric oxygen. High-resolution studies of Sr, Nd, and Pb isotopes of well-dated ferromanganese nodules contain invaluable records on climate driven changes in oceanic circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparison of mitochondrial and morphological divergence in eight populations of a widespread leaf-litter skink is used to determine the relative importance of geographic isolation and natural selection in generating phenotypic diversity in the Wet Tropics Rainforest region of Australia. The populations occur in two geographically isolated regions, and within each region, in two different habitats (closed rainforest and tall open forest) that span a well characterized ecological gradient. Morphological differences among ancient geographic isolates (separated for several million years, judging by their mitochondrial DNA sequence divergence) were slight, but morphological and life history differences among habitats were large and occurred despite moderate to high levels of mitochondrial gene flow. A field experiment identified avian predation as one potential agent of natural selection. These results indicate that natural selection operating across ecological gradients can be more important than geographic isolation in similar habitats in generating phenotypic diversity. In addition, our results indicate that selection is sufficiently strong to overcome the homogenizing effects of gene flow, a necessary first step toward speciation in continuously distributed populations. Because ecological gradients may be a source of evolutionary novelty, and perhaps new species, their conservation warrants greater attention. This is particularly true in tropical regions, where most reserves do not include ecological gradients and transitional habitats.