2 resultados para Quasi-Natural Experiment
em National Center for Biotechnology Information - NCBI
Resumo:
Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2 responsiveness in individual long-lived species cannot be accurately determined from field studies or by controlled-environment experiments. However, the required long-term data sets can be obtained from continuous records of buried leaves from living trees in wetland ecosystems. Fine-resolution analysis of the lifetime leaf record of an individual birch (Betula pendula) indicates a gradual reduction of stomatal frequency as a phenotypic acclimation to CO2 increase. During the past four decades, CO2 increments of 1 part per million by volume resulted in a stomatal density decline of approximately 0.6%. It may be hypothesized that this plastic stomatal frequency response of deciduous tree species has evolved in conjunction with the overall Cenozoic reduction of atmospheric CO2 concentrations.
Resumo:
The parameters of the spontaneous deleterious mutation process remain poorly known, despite their importance. Here, we report the results of a mutation accumulation experiment performed on panmictic populations of Drosophila melanogaster without any genetic manipulations. Two experimental populations were kept for 30 generations under relaxed natural selection. Each generation, 100 pairs were formed randomly, and every fecund pair contributed a son and a daughter to the next generation. Comparison with two controls, one cryopreserved and the other kept as the experimental populations but with long generation time, showed that the number of surviving offspring per female declined by 0.2% and 2.0% per generation under benign and harsh, competitive conditions, respectively. Thus, the mutational pressure on fitness may be strong and depends critically on the conditions under which fitness is assayed.