2 resultados para Quartets (Flute, violin, viola, cello)

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describe ethidium derivatives that stabilize G-quadruplexes. These molecules were shown to increase the melting temperature of an intramolecular quadruplex structure, as shown by fluorescence and absorbance measurements, and to facilitate the formation of intermolecular quadruplex structures. In addition, these molecules may be used to reveal the formation of multi-stranded DNA structures by standard fluorescence imaging, and therefore become fluorescent probes of quadruplex structures. This recognition was associated with telomerase inhibition in vitro: these derivatives showed a potent anti-telomerase activity, with IC50 values of 18–100 nM in a standard TRAP assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of pea (Pisum sativum L.) hypocotyl segments with indole-3-butyric acid, which promotes segment elongation, increased the solubilization of both xyloglucan and cello-oligosaccharides in the apoplast of auxin-treated pea stems. The cello-oligosaccharides were isolated from the apoplastic solution with a charcoal/Celite column and were identified as cellobiose, cellotriose, and cellotetraose after subsequent thin-layer chromatography and paper electrophoresis. Cello-oligosaccharides in the apoplastic fraction were monitored using cellobiose dehydrogenase. Both xyloglucan and cello-oligosaccharides appeared to be formed concurrently within 30 min after treatment with the auxin, and the cello-oligosaccharides increased with stem elongation even after 2 h. The total activity of cellulase did not increase for up to 4 h.