11 resultados para Quantitative Analysis
em National Center for Biotechnology Information - NCBI
Resumo:
Dendritic cells (DCs) instruct and activate a naive immune system to mount a response toward foreign proteins. Therefore, it has been hypothesized that an ideal vaccine strategy would be to directly introduce genes encoding antigens into DCs. To test this strategy quantitatively, we have compared the immune response elicited by a genetically transfected DC line to that induced by a fibroblast line, or standard genetic immunization. We observe that a single injection of 500–1,000 transfected DCs can produce a response comparable to that of standard genetic immunization, whereas fibroblasts, with up to 50-fold greater transfection efficiency, were less potent. We conclude that transfection of a small number of DCs is sufficient to initiate a wide variety of immune responses. These results indicate that targeting genes to DCs will be important for controlling and augmenting the immunological outcome in genetic immunization.
Resumo:
Although 1–24% of T cells are alloreactive, i.e., respond to MHC molecules encoded by a foreign haplotype, it is generally believed that T cells cannot recognize foreign peptides binding foreign MHC molecules. We show using a quantitative model that, if T cell selection and activation are affinity-driven, then an alloreactivity of 1–24% is incompatible with the textbook notion that self MHC restriction is absolute. If an average of 1% of clones are alloreactive, then according to our model, at most 20-fold more clones should, on average, be activated by antigens presented on self MHC than by antigens presented on foreign MHC. This ratio is at best 5 if alloreactivity is 5%. These results describe average properties of the murine immune system, but not the outcome of individual experiments. Using supercomputer technology, we simulated 100,000 MHC restriction experiments. Although the average restriction ratio was 7.1, restriction was absolute in 10% of the simulated experiments, greater than 100, although not absolute, in 29%, and below 6 in 24%. This extreme variability agrees with experimental estimates. Our analysis suggests that alloreactivity and average self MHC restriction both cannot be high, but that a low average restriction level is compatible with high levels in a significant number of experiments.
Resumo:
Effective transcript profiling in animal systems requires isolation of homogenous tissue or cells followed by faithful mRNA amplification. Linear amplification based on cDNA synthesis and in vitro transcription is reported to maintain representation of mRNA levels, however, quantitative data demonstrating this as well as a description of inherent limitations is lacking. We show that published protocols produce a template-independent product in addition to amplifying real target mRNA thus reducing the specific activity of the final product. We describe a modified amplification protocol that minimizes the generation of template-independent product and can therefore generate the desired microgram quantities of message-derived material from 100 ng of total RNA. Application of a second, nested round of cDNA synthesis and in vitro transcription reduces the required starting material to 2 ng of total RNA. Quantitative analysis of these products on Caenorhabditis elegans Affymetrix GeneChips shows that this amplification does not reduce overall sensitivity and has only minor effects on fidelity.
Resumo:
We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data.
Resumo:
The discovery that the epsilon 4 allele of the apolipoprotein E (apoE) gene is a putative risk factor for Alzheimer disease (AD) in the general population has highlighted the role of genetic influences in this extremely common and disabling illness. It has long been recognized that another genetic abnormality, trisomy 21 (Down syndrome), is associated with early and severe development of AD neuropathological lesions. It remains a challenge, however, to understand how these facts relate to the pathological changes in the brains of AD patients. We used computerized image analysis to examine the size distribution of one of the characteristic neuropathological lesions in AD, deposits of A beta peptide in senile plaques (SPs). Surprisingly, we find that a log-normal distribution fits the SP size distribution quite well, motivating a porous model of SP morphogenesis. We then analyzed SP size distribution curves in genotypically defined subgroups of AD patients. The data demonstrate that both apoE epsilon 4/AD and trisomy 21/AD lead to increased amyloid deposition, but by apparently different mechanisms. The size distribution curve is shifted toward larger plaques in trisomy 21/AD, probably reflecting increased A beta production. In apoE epsilon 4/AD, the size distribution is unchanged but the number of SP is increased compared to apoE epsilon 3, suggesting increased probability of SP initiation. These results demonstrate that subgroups of AD patients defined on the basis of molecular characteristics have quantitatively different neuropathological phenotypes.
Resumo:
To determine the extent to which hippocampal synapses are typical of those found in other cortical regions, we have carried out a quantitative analysis of olfactory cortical excitatory synapses, reconstructed from serial electron micrograph sections of mouse brain, and have compared these new observations with previously obtained data from hippocampus. Both superficial and deep layer I olfactory cortical synapses were studied. Although individual synapses in each of the areas—CA1 hippocampus, olfactory cortical layer Ia, olfactory cortical area Ib—might plausibly have been found in any of the other areas, the average characteristics of the three synapse populations are distinct. Olfactory cortical synapses in both layers are, on average, about 2.5 times larger than their hippocampal counterparts. The layer Ia olfactory cortical synapses have fewer synaptic vesicles than do the layer Ib synapses, but the absolute number of vesicles docked to the active zone in the layer Ia olfactory cortical synapses is about equal to the docked vesicle number in the smaller hippocampal synapses. As would be predicted from studies on hippocampus that relate paired-pulse facilitation to the number of docked vesicles, the synapses in layer 1a exhibit facilitation, whereas the ones in layer 1b do not. Although hippocampal synapses provide as a good model system for central synapses in general, we conclude that significant differences in the average structure of synapses from one cortical region to another exist, and this means that generalizations based on a single synapse type must be made with caution.
Resumo:
As part of our attempts at understanding fundamental principles that underlie the generation of nondividing terminally differentiated progeny from dividing precursor cells, we have developed approaches to a quantitative analysis of proliferation and differentiation of oligodendrocyte type 2 astrocyte (O-2A) progenitor cells at the clonal level. Owing to extensive previous studies of clonal differentiation in this lineage, O-2A progenitor cells represent an excellent system for such an analysis. Previous studies have resulted in two competing hypotheses; one of them suggests that progenitor cell differentiation is symmetric, the other hypothesis introduces an asymmetric process of differentiation. We propose a general model that incorporates both such extreme hypotheses as special cases. Our analysis of experimental data has shown, however, that neither of these extreme cases completely explains the observed kinetics of O-2A progenitor cell proliferation and oligodendrocyte generation in vitro. Instead, our results indicate that O-2A progenitor cells become competent for differentiation after they complete a certain number of critical mitotic cycles that represent a period of symmetric development. This number varies from clone to clone and may be thought of as a random variable; its probability distribution was estimated from experimental data. Those O-2A cells that have undergone the critical divisions then may differentiate into an oligodendrocyte in each of the subsequent mitotic cycles with a certain probability, thereby exhibiting the asymmetric type of differentiation.
Resumo:
We have developed a technique called the generation of longer cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI), to convert SAGE tags of 10 bases into their corresponding 3′ cDNA fragments covering hundred bases. A primer containing the 10-base SAGE tag is used as the sense primer, and a single base anchored oligo(dT) primer is used as an antisense primer in PCR, together with Pfu DNA polymerase. By using this approach, a cDNA fragment extending from the SAGE tag toward the 3′ end of the corresponding sequence can be generated. Application of the GLGI technique can solve two critical issues in applying the SAGE technique: one is that a longer fragment corresponding to a SAGE tag, which has no match in databases, can be generated for further studies; the other is that the specific fragment corresponding to a SAGE tag can be identified from multiple sequences that match the same SAGE tag. The development of the GLGI method provides several potential applications. First, it provides a strategy for even wider application of the SAGE technique for quantitative analysis of global gene expression. Second, a combined application of SAGE/GLGI can be used to complete the catalogue of the expressed genes in human and in other eukaryotic species. Third, it can be used to identify the 3′ cDNA sequence from any exon within a gene. It can also be used to confirm the reality of exons predicted by bioinformatic tools in genomic sequences. Fourth, a combined application of SAGE/GLGI can be applied to define the 3′ boundary of expressed genes in the genomic sequences in human and in other eukaryotic genomes.
Resumo:
We report here the construction, characterization, and application of a bacterial bioreporter for fructose and sucrose that was designed to monitor the availability of these sugars to microbial colonizers of the phyllosphere. Plasmid pPfruB-gfp[AAV] carries the Escherichia coli fruB promoter upstream from the gfp[AAV] allele that codes for an unstable variant of green fluorescent protein (GFP). In Erwinia herbicola, this plasmid brings about the accumulation of GFP fluorescence in response to both fructose and sucrose. Cells of E. herbicola (pPfruB-gfp[AAV]) were sprayed onto bean plants, recovered from leaves at various time intervals after inoculation, and analyzed individually for GFP content by quantitative analysis of digital microscope images. We observed a positive correlation between single-cell GFP accumulation and ribosomal content as determined by fluorescence in situ hybridization, indicating that foliar growth of E. herbicola occurred at the expense of fructose and/or sucrose. One hour after inoculation, nearly all bioreporter cells appeared to be actively engaged in fructose consumption. This fraction dropped to approximately 11% after 7 h and to ≈1% a day after inoculation. This pattern suggests a highly heterogeneous availability of fructose to individual E. herbicola cells as they colonize the phyllosphere. We estimated that individual cells were exposed to local initial fructose abundances ranging from less than 0.15 pg fructose to more than 4.6 pg.
Resumo:
The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.
Resumo:
Detailed characterization of denatured states of proteins is necessary to understand the interactions that funnel the large number of possible conformations along fast routes for folding. Nuclear magnetic resonance experiments based on the nuclear Overhauser effect (NOE) detect hydrogen atoms close in space and provide information about local structure. Here we present an NMR procedure that detects almost all sequential NOEs between amide hydrogen atoms (HN-HN NOE), including those in random coil regions in a protein, barnase, in urea solutions. A semi-quantitative analysis of these HN-HN NOEs identified partly structured regions that are in remarkable agreement with those found to form early on the reaction pathway. Our results strongly suggest that the folding of barnase initiates at the first helix and the beta-turn between the third and the fourth strands. This strategy of defining residual structure has also worked for cold-denatured barstar and guanidinium hydrochloride-denatured chymotrypsin inhibitor 2 and so should be generally applicable.