55 resultados para Quadratic forms

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inositol polyphosphate 4-phosphatase (4-phosphatase) is an enzyme that catalyses the hydrolysis of the 4-position phosphate from phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. In human platelets the formation of this phosphatidylinositol, by the actions of phosphatidylinositol 3-kinase (PI 3-kinase), correlates with irreversible platelet aggregation. We have shown previously that a phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase forms a complex with the p85 subunit of PI 3-kinase. In this study we investigated whether PI 3-kinase also forms a complex with the 4-phosphatase in human platelets. Immunoprecipitates of the p85 subunit of PI 3-kinase from human platelet cytosol contained 4-phosphatase enzyme activity and a 104-kDa polypeptide recognized by specific 4-phosphatase antibodies. Similarly, immunoprecipitates made using 4-phosphatase-specific antibodies contained PI 3-kinase enzyme activity and an 85-kDa polypeptide recognized by antibodies to the p85 adapter subunit of PI 3-kinase. After thrombin activation, the 4-phosphatase translocated to the actin cytoskeleton along with PI 3-kinase in an integrin- and aggregation-dependent manner. The majority of the PI 3-kinase/4-phosphatase complex (75%) remained in the cytosolic fraction. We propose that the complex formed between the two enzymes serves to localize the 4-phosphatase to sites of PtdIns(3,4)P2 production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receptor 2B4 belongs to the Ig superfamily and is found on the surface of all murine natural killer (NK) cells as well as T cells displaying non-MHC-restricted cytotoxicity. Previous studies have suggested that 2B4 is an activating molecule because cross-linking of this receptor results in increased cytotoxicity and γ-interferon secretion as well as granule exocytosis. However, it was recently shown that the gene for 2B4 encodes two different products that arise by alternative splicing. These gene products differ solely in their cytoplasmic domains. One form has a cytoplasmic tail of 150 amino acids (2B4L) and the other has a tail of 93 amino acids (2B4S). To determine the function of each receptor, cDNAs for 2B4S and 2B4L were transfected into the rat NK cell line RNK-16. Interestingly, the two forms of 2B4 had opposing functions. 2B4S was able to mediate redirected lysis of P815 tumor targets, suggesting that this form represents an activating receptor. However, 2B4L expression led to an inhibition of redirected lysis of P815 targets when the mAb 3.2.3 (specific for rat NKRP1) was used. In addition, 2B4L constitutively inhibits lysis of YAC-1 tumor targets. 2B4L is a tyrosine phosphoprotein, and removal of domains containing these residues abrogates its inhibitory function. Like other inhibitory receptors, 2B4L associates with the tyrosine phosphatase SHP-2. Thus, 2B4L is an inhibitory receptor belonging to the Ig superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism’s behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a “retrograde” manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquitination of the S phase cyclin-dependent kinase inhibitor SIC1. SCF is composed of three proteins—ySKP1, CDC53 (Cullin), and the F-box protein CDC4—that are conserved from yeast to humans. As part of an effort to identify components and substrates of a putative human SCF complex, we isolated hSKP1 in a two-hybrid screen with hCUL1, the closest human homologue of CDC53. Here, we show that hCUL1 associates with hSKP1 in vivo and directly interacts with both hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-like particle. Moreover, hCUL1 complements the growth defect of yeast cdc53ts mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. Taken together, these data suggest that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. Further application of biochemical assays similar to those described here can now be used to identify regulators/components of hCUL1-based SCF complexes, to determine whether the hCUL2–hCUL5 proteins also are components of ubiquitin ligase complexes in human cells, and to screen for chemical compounds that modulate the activities of the hSKP1 and hCUL1 proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance mediated by the drug efflux protein, P-glycoprotein (P-gp), is one mechanism that tumor cells use to escape death induced by chemotherapeutic agents. However, the mechanism by which P-gp confers resistance to a large variety of structurally diverse molecules has remained elusive. In this study, classical multidrug resistant human CEM and K562 tumor cell lines expressing high levels of P-gp were less sensitive to multiple forms of caspase-dependent cell death, including that mediated by cytotoxic drugs and ligation of Fas. The DNA fragmentation and membrane damage inflicted by these stimuli were defined as caspase dependent by various soluble peptide fluoromethylketone caspase inhibitors. Inhibition of P-gp function by the anti-P-gp mAb MRK-16 or verapamil could reverse resistance to these forms of cell death. Inhibition of P-gp function also enhanced drug or Fas-mediated activation of caspase-3 in drug-resistant CEM cells. By contrast, caspase-independent cell death events in the same cells, including those mediated by pore-forming proteins or intact NK cells, were not affected by P-gp expression. These observations suggest that, in addition to effluxing drugs, P-gp may play a specific role in regulating some caspase-dependent apoptotic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When administered intracerebroventricularly to mice performing various learning tasks involving either short-term or long-term memory, secreted forms of the β-amyloid precursor protein (APPs751 and APPs695) have potent memory-enhancing effects and block learning deficits induced by scopolamine. The memory-enhancing effects of APPs were observed over a wide range of extremely low doses (0.05-5,000 pg intracerebroventricularly), blocked by anti-APPs antisera, and observed when APPs was administered either after the first training session in a visual discrimination or a lever-press learning task or before the acquisition trial in an object recognition task. APPs had no effect on motor performance or exploratory activity. APPs695 and APPs751 were equally effective in the object recognition task, suggesting that the memory-enhancing effect of APPs does not require the Kunitz protease inhibitor domain. These data suggest an important role for APPss on memory processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylases such as human HDAC1 and yeast RPD3 are trichostatin A (TSA)-sensitive enzymes that are members of large, multiprotein complexes. These contain specialized subunits that help target the catalytic protein to histones at the appropriate DNA regulatory element, where the enzyme represses transcription. To date, no deacetylase catalytic subunits have been shown to have intrinsic activity, suggesting that noncatalytic subunits of the deacetylase complex are required for their enzymatic function. In this paper we describe a novel yeast histone deacetylase HOS3 that is relatively insensitive to the histone deacetylase inhibitor TSA, forms a homodimer when expressed ectopically both in yeast and Escherichia coli, and has intrinsic activity when produced in the bacterium. Most HOS3 protein can be found associated with a larger complex in partially purified yeast nuclear extracts, arguing that the HOS3 homodimer may be dissociated from a very large nuclear structure during purification. We also demonstrate, using a combination of mass spectrometry, tandem mass spectrometry, and proteolytic digestion, that recombinant HOS3 has a distinct specificity in vitro for histone H4 sites K5 and K8, H3 sites K14 and K23, H2A site K7, and H2B site K11. We propose that while factors that interact with HOS3 may sequester the catalytic subunit at specific cellular sites, they are not required for HOS3 histone deacetylase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse p53 protein generated by alternative splicing (p53as) has amino acid substitutions at its C terminus that result in constitutively active sequence-specific DNA binding (active form), whereas p53 protein itself binds inefficiently (latent form) unless activated by C-terminal modification. Exogenous p53as expression activated transcription of reporter plasmids containing p53 binding sequences and inhibited growth of mouse and human cells lacking functional endogenous p53. Inducible p53as in stably transfected p53 null fibroblasts increased p21WAF1/Cip-1/Sdi and decreased bcl-2 protein steady-state levels. Endogenous p53as and p53 proteins differed in response to cellular DNA damage. p53 protein was induced transiently in normal keratinocytes and fibroblasts whereas p53as protein accumulation was sustained in parallel with induction of p21WAF1/Cip-1/Sdi protein and mRNA, in support of p53as transcriptional activity. Endogenous p53 and p53as proteins in epidermal tumor cells responded to DNA damage with different kinetics of nuclear accumulation and efficiencies of binding to a p53 consensus DNA sequence. A model is proposed in which C-terminally distinct p53 protein forms specialize in functions, with latent p53 forms primarily for rapid non-sequence-specific binding to sites of DNA damage and active p53 forms for sustained regulation of transcription and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcal α-toxin is a 293-residue, single-chain polypeptide that spontaneously assembles into a heptameric pore in target cell membranes. To identify the pore-forming domain, substitution mutants have been produced in which single cysteine residues were introduced throughout the toxin molecule. By attaching the environmentally sensitive dye acrylodan to the sulfhydryl groups, the environment of individual amino acid side chains could be probed. In liposomes, a single 23-amino acid sequence (residues 118–140) was found to move from a polar to a nonpolar environment, indicating that this sequence forms the walls of the pore. However, periodicity in side chain environmental polarity could not be detected in the liposomal system. In the present study, the fluorimetric analyses were extended to physiological target cells. With susceptible cells such as rabbit erythrocytes and human lymphocytes, the 23 central amino acids 118–140 were again found to insert into the membrane; in contrast to the previous study with liposomes, the expected periodicity was now detected. Thus, every other residue in the sequence 126–140 entered a nonpolar environment in a striking display of an amphipathic transmembrane β-barrel. In contrast, human granulocytes were found to bind α-toxin to a similar extent as lymphocytes, but the heptamers forming on these cells failed to insert their pore-forming domain into the membrane. As a consequence, nonfunctional heptamers assembled and the cells remained viable. The data resolve the molecular organization of a pore-forming toxin domain in living cells and reveal that resistant cells can prevent insertion of the functional domain into the bilayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NtrC (nitrogen regulatory protein C) is a bacterial enhancer-binding protein of 469 residues that activates transcription by σ54-holoenzyme. A region of its transcriptional activation (central) domain that is highly conserved among homologous activators of σ54-holoenzyme—residues 206–220—is essential for interaction with this RNA polymerase: it is required for contact with the polymerase and/or for coupling the energy from ATP hydrolysis to a change in the conformation of the polymerase that allows it to form transcriptionally productive open complexes. Several mutant NtrC proteins with amino acid substitutions in this region, including NtrCA216V and NtrCG219K, have normal ATPase activity but fail in transcriptional activation. We now report that other mutant forms carrying amino acid substitutions at these same positions, NtrCA216C and NtrCG219C, are capable of activating transcription when they are not bound to a DNA template (non-DNA-binding derivatives with an altered helix–turn–helix DNA-binding motif at the C terminus of the protein) but are unable to do so when they are bound to a DNA template, whether or not it carries a specific enhancer. Enhancer DNA remains a positive allosteric effector of ATP hydrolysis, as it is for wild-type NtrC but, surprisingly, appears to have become a negative allosteric effector for some aspect of interaction with σ54-holoenzyme. The conserved region in which these amino acid substitutions occur (206–220) is equivalent to the Switch I region of a large group of purine nucleotide-binding proteins. Interesting analogies can be drawn between the Switch I region of NtrC and that of p21ras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral deposition of the amyloid β protein (Aβ) is an early and invariant feature of Alzheimer disease (AD). Whereas the 40-amino acid form of Aβ (Aβ40) accounts for ≈90% of all Aβ normally released from cells, it appears to contribute only to later phases of the pathology. In contrast, the longer more amyloidogenic 42-residue form (Aβ42), accounting for only ≈10% of secreted Aβ, is deposited in the earliest phase of AD and remains the major constituent of most amyloid plaques throughout the disease. Moreover, its levels have been shown to be increased in all known forms of early-onset familial AD. Thus, inhibition of Aβ42 production is a prime therapeutic goal. The same protease, γ-secretase, is assumed to generate the C termini of both Aβ40 and Aβ42. Herein, we analyze the effect of the compound MDL 28170, previously suggested to inhibit γ-secretase, on β-amyloid precursor protein processing. By immunoprecipitating conditioned medium of different cell lines with various Aβ40- and Aβ42-specific antibodies, we demonstrate a much stronger inhibition of the γ-secretase cleavage at residue 40 than of that at residue 42. These data suggest that different proteases generate the Aβ40 and Aβ42 C termini. Further, they raise the possibility of identifying compounds that do not interfere with general β-amyloid precursor protein metabolism, including Aβ40 production, but specifically block the generation of the pathogenic Aβ42 peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the Regulat or Stochastic Conjecture for the real quadratic family which asserts that almost every real quadratic map Pc, c ∈ [−2, 1/4], has either an attracting cycle or an absolutely continuous invariant measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate structural transitions within a single stretched and supercoiled DNA molecule. With negative supercoiling, for a stretching force >0.3 pN, we observe the coexistence of B-DNA and denatured DNA from σ ≈ −0.015 down to σ = −1. Surprisingly, for positively supercoiled DNA (σ > +0.037) stretched by 3 pN, we observe a similar coexistence of B-DNA and a new, highly twisted structure. Experimental data and molecular modeling suggest that this structure has ≈2.62 bases per turn and an extension 75% larger than B-DNA. This structure has tightly interwound phosphate backbones and exposed bases in common with Pauling’s early DNA structure [Pauling, L. & Corey, R. B. (1953), Proc. Natl. Acad. Sci. USA 39, 84–97] and an unusual structure proposed for the Pf1 bacteriophage [Liu, D. J. & Day, L. A. (1994) Science 265, 671–674].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft. The proteins belong to a large family of secondary transporters, which includes bacterial glutamate transporters. The C-terminal half of the glutamate transporters is well conserved and thought to contain the translocation path and the binding sites for substrate and coupling ions. A serine-rich sequence motif in this part of the proteins is located in a putative intracellular loop. Cysteine-scanning mutagenesis was applied to this loop in the glutamate transporter GltT of Bacillus stearothermophilus. The loop was found to be largely intracellular, but three consecutive positions in the conserved serine-rich motif (S269, S270, and E271) are accessible from both sides of the membrane. Single-cysteine mutants in the serine-rich motif were still capable of glutamate transport, but modification with N-ethylmaleimide blocked the transport activity in six mutants (T267C, A268C, S269C, S270C, E271C, and T272C). Two milimolars l-glutamate effectively protected against the modification of the cysteines at position 269–271 from the periplasmic side of the membrane but was unable to protect cysteine modification from the cytoplasmic side of the membrane. The results indicate that the conserved serine-rich motif in the glutamate transporter forms a reentrant loop, a structure that is found in several ion channels but is unusual for transporter proteins. The reentrant loop is of crucial importance for the function of the glutamate transporter.