6 resultados para Quadratic assignment

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the Regulat or Stochastic Conjecture for the real quadratic family which asserts that almost every real quadratic map Pc, c ∈ [−2, 1/4], has either an attracting cycle or an absolutely continuous invariant measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NMR assignment of 13C, 15N-labeled proteins with the use of triple resonance experiments is limited to molecular weights below ∼25,000 Daltons, mainly because of low sensitivity due to rapid transverse nuclear spin relaxation during the evolution and recording periods. For experiments that exclusively correlate the amide proton (1HN), the amide nitrogen (15N), and 13C atoms, this size limit has been previously extended by additional labeling with deuterium (2H). The present paper shows that the implementation of transverse relaxation-optimized spectroscopy ([15N,1H]-TROSY) into triple resonance experiments results in several-fold improved sensitivity for 2H/13C/15N-labeled proteins and approximately twofold sensitivity gain for 13C/15N-labeled proteins. Pulse schemes and spectra recorded with deuterated and protonated proteins are presented for the [15N, 1H]-TROSY-HNCA and [15N, 1H]-TROSY-HNCO experiments. A theoretical analysis of the HNCA experiment shows that the primary TROSY effect is on the transverse relaxation of 15N, which is only little affected by deuteration, and predicts sensitivity enhancements that are in close agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many small bacterial, archaebacterial, and eukaryotic genomes have been sequenced, and the larger eukaryotic genomes are predicted to be completely sequenced within the next decade. In all genomes sequenced to date, a large portion of these organisms’ predicted protein coding regions encode polypeptides of unknown biochemical, biophysical, and/or cellular functions. Three-dimensional structures of these proteins may suggest biochemical or biophysical functions. Here we report the crystal structure of one such protein, MJ0577, from a hyperthermophile, Methanococcus jannaschii, at 1.7-Å resolution. The structure contains a bound ATP, suggesting MJ0577 is an ATPase or an ATP-mediated molecular switch, which we confirm by biochemical experiments. Furthermore, the structure reveals different ATP binding motifs that are shared among many homologous hypothetical proteins in this family. This result indicates that structure-based assignment of molecular function is a viable approach for the large-scale biochemical assignment of proteins and for discovering new motifs, a basic premise of structural genomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentous fungi are a large group of diverse and economically important microorganisms. Large-scale gene disruption strategies developed in budding yeast are not applicable to these organisms because of their larger genomes and lower rate of targeted integration (TI) during transformation. We developed transposon-arrayed gene knockouts (TAGKO) to discover genes and simultaneously create gene disruption cassettes for subsequent transformation and mutant analysis. Transposons carrying a bacterial and fungal drug resistance marker are used to mutagenize individual cosmids or entire libraries in vitro. Cosmids are annotated by DNA sequence analysis at the transposon insertion sites, and cosmid inserts are liberated to direct insertional mutagenesis events in the genome. Based on saturation analysis of a cosmid insert and insertions in a fungal cosmid library, we show that TAGKO can be used to rapidly identify and mutate genes. We further show that insertions can create alterations in gene expression, and we have used this approach to investigate an amino acid oxidation pathway in two important fungal phytopathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rfp-Y is a second region in the genome of the chicken containing major histocompatibility complex (MHC) class I and II genes. Haplotypes of Rfp-Y assort independently from haplotypes of the B system, a region known to function as a MHC and to be located on chromosome 16 (a microchromosome) with the single nucleolar organizer region (NOR) in the chicken genome. Linkage mapping with reference populations failed to reveal the location of Rfp-Y, leaving Rfp-Y unlinked in a map containing >400 markers. A possible location of Rfp-Y became apparent in studies of chickens trisomic for chromosome 16 when it was noted that the intensity of restriction fragments associated with Rfp-Y increased with increasing copy number of chromosome 16. Further evidence that Rfp-Y might be located on chromosome 16 was obtained when individuals trisomic for chromosome 16 were found to transmit three Rfp-Y haplotypes. Finally, mapping of cosmid cluster III of the molecular map of chicken MHC genes (containing a MHC class II gene and two rRNA genes) to Rfp-Y validated the assignment of Rfp-Y to the MHC/NOR microchromosome. A genetic map can now be drawn for a portion of chicken chromosome 16 with Rfp-Y, encompassing two MHC class I and three MHC class II genes, separated from the B system by a region containing the NOR and exhibiting highly frequent recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors.