2 resultados para QUINOLINE

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloroquine is thought to exert its antimalarial effect by preventing the polymerization of toxic heme released during proteolysis of hemoglobin in the Plasmodium digestive vacuole. The mechanism of this blockade has not been established. We incubated cultured parasites with subinhibitory doses of [3H]chloroquine and [3H] quinidine. These [3H]quinoline compounds became associated with hemozoin as assessed by electron microscope autoradiography and subcellular fractionation. In vitro, binding of [3H]quinoline inhibitors to the hemozoin chain depended on the addition of heme substrate. These data counter previous conclusions regarding the lack of quinoline association with hemozoin, explain the exaggerated accumulation of quinolines in the plasmodium digestive vacuole, and suggest that a quinoline heme complex incorporates into the growing polymer to terminate chain extension, blocking further sequestration of toxic heme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exact role of the pfmdr1 gene in the emergence of drug resistance in the malarial parasite Plasmodium falciparum remains controversial. pfmdr1 is a member of the ATP binding cassette (ABC) superfamily of transporters that includes the mammalian P-glycoprotein family. We have introduced wild-type and mutant variants of the pfmdr1 gene in the yeast Saccharomyces cerevisiae and have analyzed the effect of pfmdr1 expression on cellular resistance to quinoline-containing antimalarial drugs. Yeast transformants expressing either wild-type or a mutant variant of mouse P-glycoprotein were also analyzed. Dose-response studies showed that expression of wild-type pfmdr1 causes cellular resistance to quinine, quinacrine, mefloquine, and halofantrine in yeast cells. Using quinacrine as substrate, we observed that increased resistance to this drug in pfmdr1 transformants was associated with decreased cellular accumulation and a concomitant increase in drug release from preloaded cells. The introduction of amino acid polymorphisms in TM11 of Pgh-1 (pfmdr1 product) associated with drug resistance in certain field isolates of P. falciparum abolished the capacity of this protein to confer drug resistance. Thus, these findings suggest that Pgh-1 may act as a drug transporter in a manner similar to mammalian P-glycoprotein and that sequence variants associated with drug-resistance pfmdr1 alleles behave as loss of function mutations.