45 resultados para QCT NMR
em National Center for Biotechnology Information - NCBI
Resumo:
Polymers of N-substituted glycines (“peptoids”) containing chiral centers at the α position of their side chains can form stable structures in solution. We studied a prototypical peptoid, consisting of five para-substituted (S)-N-(1-phenylethyl)glycine residues, by NMR spectroscopy. Multiple configurational isomers were observed, but because of extensive signal overlap, only the major isomer containing all cis-amide bonds was examined in detail. The NMR data for this molecule, in conjunction with previous CD spectroscopic results, indicate that the major species in methanol is a right-handed helix with cis-amide bonds. The periodicity of the helix is three residues per turn, with a pitch of ≈6 Å. This conformation is similar to that anticipated by computational studies of a chiral peptoid octamer. The helical repeat orients the amide bond chromophores in a manner consistent with the intensity of the CD signal exhibited by this molecule. Many other chiral polypeptoids have similar CD spectra, suggesting that a whole family of peptoids containing chiral side chains is capable of adopting this secondary structure motif. Taken together, our experimental and theoretical studies of the structural properties of chiral peptoids lay the groundwork for the rational design of more complex polypeptoid molecules, with a variety of applications, ranging from nanostructures to nonviral gene delivery systems.
Resumo:
The boronium-carbonium continuum was extended to include hypercoordinated protonated methanes and their boron analogs. The 11B NMR chemical shifts of the hypercoordinated hydriodo boron compounds and the 13C NMR chemical shifts of the corresponding isoelectronic and isostructural carbocations were calculated by using the GIAO-MP2 method. The data show good linear correlation between 11B and 13C NMR chemical shifts, which indicates that the same factors that determine the chemical shifts of the boron nuclei also govern the chemical shifts of carbon nuclei of these hypercoordinated hydriodo compounds.
Resumo:
The recent discovery of leptin receptors in peripheral tissue raises questions about which of leptin’s biological actions arise from direct effects of the hormone on extraneural tissues and what intracellular mechanisms are responsible for leptin’s effects on carbohydrate and lipid metabolism. The present study is focused on the action of leptin on hepatic metabolism. Nondestructive 13C NMR methodology was used to follow the kinetics of intermediary metabolism by monitoring flux of 13C-labeled substrate through several multistep pathways. In perfused liver from either ob/ob or lean mice, we found that acute treatment with leptin in vitro modulates pathways controlling carbohydrate flux into 13C-labeled glycogen, thereby rapidly enhancing synthesis by an insulin-independent mechanism. Acute treatment of ob/ob liver also caused a rapid stimulation of long-chain fatty acid synthesis from 13C-labeled acetyl-CoA by the de novo synthesis route. Chronic leptin treatment in vivo induced homeostatic changes that resulted in a tripling of the rate of glycogen synthesis via the gluconeogenic pathway from [2-13C]pyruvate in ob/ob mouse liver perfused in the absence of the hormone. Consistent with the 13C NMR results, leptin treatment of the ob/ob mouse in vivo resulted in significantly increased hepatic glycogen synthase activity. Chronic treatment with leptin in vivo exerted the opposite effect of acute treatment in vitro and markedly decreased hepatic de novo synthesis of fatty acids in ob/ob mouse liver. In agreement with the 13C NMR findings, activities of hepatic acetyl-CoA carboxylase and fatty acid synthase were significantly reduced by chronic treatment of the ob/ob mouse with leptin. Our data represent a demonstration of direct effects of leptin in the regulation of metabolism in the intact functioning liver.
Resumo:
Nuclear magnetic resonance (NMR) of isolated lignins from an Arabidopsis mutant deficient in ferulate 5-hydroxylase (F5H) and transgenic plants derived from the mutant by overexpressing the F5H gene has provided detailed insight into the compositional and structural differences between these lignins. Wild-type Arabidopsis has a guaiacyl-rich, syringyl-guaiacyl lignin typical of other dicots, with prominent β-aryl ether (β–O–4), phenylcoumaran (β–5), resinol (β–β), biphenyl/dibenzodioxocin (5–5), and cinnamyl alcohol end-group structures. The lignin isolated from the F5H-deficient fah1–2 mutant contained only traces of syringyl units and consequently enhanced phenylcoumaran and dibenzodioxocin levels. In fah1–2 transgenics in which the F5H gene was overexpressed under the control of the cauliflower mosaic virus 35S promoter, a guaiacyl-rich, syringyl/guaiacyl lignin similar to the wild type was produced. In contrast, the isolated lignin from the fah1–2 transgenics in which F5H expression was driven by the cinnamate 4-hydroxylase promoter was almost entirely syringyl in nature. This simple lignin contained predominantly β-aryl ether units, mainly with erythro-stereochemistry, with some resinol structures. No phenylcoumaran or dibenzodioxocin structures (which require guaiacyl units) were detectable. The overexpression of syringyl units in this transgenic resulted in a lignin with a higher syringyl content than that in any other plant we have seen reported.
Resumo:
Complete resolution of the amide resonances in a three-dimensional solid-state NMR correlation spectrum of a uniformly 15N-labeled membrane protein in oriented phospholipid bilayers is demonstrated. The three orientationally dependent frequencies, 1H chemical shift, 1H–15N dipolar coupling, and 15N chemical shift, associated with each amide resonance are responsible for resolution among resonances and provide sufficient angular restrictions for protein structure determination. Because the protein is completely immobilized by the phospholipids on the relevant NMR time scales (10 kHz), the linewidths will not degrade in the spectra of larger proteins. Therefore, these results demonstrate that solid-state NMR experiments can overcome the correlation time problem and extend the range of proteins that can have their structures determined by NMR spectroscopy to include uniformly 15N-labeled membrane proteins in phospholipid bilayers.
Resumo:
Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl–SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.
Resumo:
The structural basis of species specificity of transmissible spongiform encephalopathies, such as bovine spongiform encephalopathy or “mad cow disease” and Creutzfeldt–Jakob disease in humans, has been investigated using the refined NMR structure of the C-terminal domain of the mouse prion protein with residues 121–231. A database search for mammalian prion proteins yielded 23 different sequences for the fragment 124–226, which display a high degree of sequence identity and show relevant amino acid substitutions in only 18 of the 103 positions. Except for a unique isolated negative surface charge in the bovine protein, the amino acid differences are clustered in three distinct regions of the three-dimensional structure of the cellular form of the prion protein. Two of these regions represent potential species-dependent surface recognition sites for protein–protein interactions, which have independently been implicated from in vitro and in vivo studies of prion protein transformation. The third region consists of a cluster of interior hydrophobic side chains that may affect prion protein transformation at later stages, after initial conformational changes in the cellular protein.
Resumo:
By means of optical pumping with laser light it is possible to enhance the nuclear spin polarization of gaseous xenon by four to five orders of magnitude. The enhanced polarization has allowed advances in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI), including polarization transfer to molecules and imaging of lungs and other void spaces. A critical issue for such applications is the delivery of xenon to the sample while maintaining the polarization. Described herein is an efficient method for the introduction of laser-polarized xenon into systems of biological and medical interest for the purpose of obtaining highly enhanced NMR/MRI signals. Using this method, we have made the first observation of the time-resolved process of xenon penetrating the red blood cells in fresh human blood—the xenon residence time constant in the red blood cells was measured to be 20.4 ± 2 ms. The potential of certain biologically compatible solvents for delivery of laser-polarized xenon to tissues for NMR/MRI is discussed in light of their respective relaxation and partitioning properties.
Resumo:
We report high resolution solution 19F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF3-CH2-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6–10 mg), in dodecylmaltoside, were analyzed at 20°C by solution 19F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for 19F labels at positions 67 (−0.2 ppm) and 140 (−0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution 19F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation.
Resumo:
This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids.
Resumo:
The NMR assignment of 13C, 15N-labeled proteins with the use of triple resonance experiments is limited to molecular weights below ∼25,000 Daltons, mainly because of low sensitivity due to rapid transverse nuclear spin relaxation during the evolution and recording periods. For experiments that exclusively correlate the amide proton (1HN), the amide nitrogen (15N), and 13C atoms, this size limit has been previously extended by additional labeling with deuterium (2H). The present paper shows that the implementation of transverse relaxation-optimized spectroscopy ([15N,1H]-TROSY) into triple resonance experiments results in several-fold improved sensitivity for 2H/13C/15N-labeled proteins and approximately twofold sensitivity gain for 13C/15N-labeled proteins. Pulse schemes and spectra recorded with deuterated and protonated proteins are presented for the [15N, 1H]-TROSY-HNCA and [15N, 1H]-TROSY-HNCO experiments. A theoretical analysis of the HNCA experiment shows that the primary TROSY effect is on the transverse relaxation of 15N, which is only little affected by deuteration, and predicts sensitivity enhancements that are in close agreement with the experimental data.
Resumo:
We describe the application of 59Co NMR to the study of naturally occurring cobalamins. Targets of these investigations included vitamin B12, the B12 coenzyme, methylcobalamin, and dicyanocobyrinic acid heptamethylester. These measurements were carried out on solutions and powders of different origins, and repeated at a variety of magnetic field strengths. Particularly informative were the solid-state central transition NMR spectra, which when combined with numerical line shape analyses provided a clear description of the cobalt coupling parameters. These parameters showed a high sensitivity to the type of ligands attached to the metal and to the crystallization history of the sample. 59Co NMR determinations also were carried out on synthetic cobaloximes possessing alkyl, cyanide, aquo, and nitrogenated axial groups, substituents that paralleled the coordination of the natural compounds. These analogs displayed coupling anisotropies comparable to those of the cobalamins, as well as systematic up-field shifts that can be rationalized in terms of their stronger binding affinity to the cobalt atom. Cobaloximes also displayed a higher regularity in the relative orientations of their quadrupole and shielding coupling tensors, reflecting a higher symmetry in their in-plane coordination. For the cobalamines, poor correlations were observed between the values measured for the quadrupole couplings in the solid and the line widths observed in the corresponding solution 59Co NMR resonances.
Resumo:
Fast transverse relaxation of 1H, 15N, and 13C by dipole-dipole coupling (DD) and chemical shift anisotropy (CSA) modulated by rotational molecular motions has a dominant impact on the size limit for biomacromolecular structures that can be studied by NMR spectroscopy in solution. Transverse relaxation-optimized spectroscopy (TROSY) is an approach for suppression of transverse relaxation in multidimensional NMR experiments, which is based on constructive use of interference between DD coupling and CSA. For example, a TROSY-type two-dimensional 1H,15N-correlation experiment with a uniformly 15N-labeled protein in a DNA complex of molecular mass 17 kDa at a 1H frequency of 750 MHz showed that 15N relaxation during 15N chemical shift evolution and 1HN relaxation during signal acquisition both are significantly reduced by mutual compensation of the DD and CSA interactions. The reduction of the linewidths when compared with a conventional two-dimensional 1H,15N-correlation experiment was 60% and 40%, respectively, and the residual linewidths were 5 Hz for 15N and 15 Hz for 1HN at 4°C. Because the ratio of the DD and CSA relaxation rates is nearly independent of the molecular size, a similar percentagewise reduction of the overall transverse relaxation rates is expected for larger proteins. For a 15N-labeled protein of 150 kDa at 750 MHz and 20°C one predicts residual linewidths of 10 Hz for 15N and 45 Hz for 1HN, and for the corresponding uniformly 15N,2H-labeled protein the residual linewidths are predicted to be smaller than 5 Hz and 15 Hz, respectively. The TROSY principle should benefit a variety of multidimensional solution NMR experiments, especially with future use of yet somewhat higher polarizing magnetic fields than are presently available, and thus largely eliminate one of the key factors that limit work with larger molecules.
Resumo:
Because xenon NMR is highly sensitive to the local environment, laser-polarized xenon could be a unique probe of living tissues. Realization of clinical and medical science applications beyond lung airspace imaging requires methods of efficient delivery of laser-polarized xenon to tissues, because of the short spin-lattice relaxation times and relatively low concentrations of xenon attainable in the body. Preliminary results from the application of a polarized xenon injection technique for in vivo 129Xe NMR/MRI are extrapolated along with a simple model of xenon transit to show that the peak local concentration of polarized xenon delivered to tissues by injection may exceed that delivered by respiration by severalfold.
Resumo:
The leukocyte integrin, lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18), mediates cell adhesion and signaling in inflammatory and immune responses. To support these functions, LFA-1 must convert from a resting to an activated state that avidly binds its ligands such as intercellular adhesion molecule 1 (ICAM-1). Biochemical and x-ray studies of the Mac-1 (CD11b/CD18) I domain suggest that integrin activation could involve a conformational change of the C-terminal α-helix. We report the use of NMR spectroscopy to identify CD11a I domain residues whose resonances are affected by binding to ICAM-1. We observed two distinct sites in the CD11a I domain that were affected. As expected from previous mutagenesis studies, a cluster of residues localized around the metal ion-dependent adhesion site (MIDAS) was severely perturbed on ICAM-1 binding. A second cluster of residues distal to the MIDAS that included the C-terminal α-helix of the CD11a I domain was also affected. Substitution of residues in the core of this second I domain site resulted in constitutively active LFA-1 binding to ICAM-1. Binding data indicates that none of the 20 substitution mutants we tested at this second site form an essential ICAM-1 binding interface. We also demonstrate that residues in the I domain linker sequences can regulate LFA-1 binding. These results indicate that LFA-1 binding to ICAM-1 is regulated by an I domain allosteric site (IDAS) and that this site is structurally linked to the MIDAS.