7 resultados para Pure word deafness
em National Center for Biotechnology Information - NCBI
Resumo:
During metamorphosis, ranid frogs shift from a purely aquatic to a partly terrestrial lifestyle. The central auditory system undergoes functional and neuroanatomical reorganization in parallel with the development of new sound conduction pathways adapted for the detection of airborne sounds. Neural responses to sounds can be recorded from the auditory midbrain of tadpoles shortly after hatching, with higher rates of synchronous neural activity and lower sharpness of tuning than observed in postmetamorphic animals. Shortly before the onset of metamorphic climax, there is a brief “deaf” period during which no auditory activity can be evoked from the midbrain, and a loss of connectivity is observed between medullary and midbrain auditory nuclei. During the final stages of metamorphic development, auditory function and neural connectivity are restored. The acoustic communication system of the adult frog emerges from these periods of anatomical and physiological plasticity during metamorphosis.
Resumo:
The human deafness dystonia syndrome results from the mutation of a protein (DDP) of unknown function. We show now that DDP is a mitochondrial protein and similar to five small proteins (Tim8p, Tim9p, Tim10p, Tim12p, and Tim13p) of the yeast mitochondrial intermembrane space. Tim9p, Tim10p, and Tim12p mediate the import of metabolite transporters from the cytoplasm into the mitochondrial inner membrane and interact structurally and functionally with Tim8p and Tim13p. DDP is most similar to Tim8p. Tim8p exists as a soluble 70-kDa complex with Tim13p and Tim9p, and deletion of Tim8p is synthetically lethal with a conditional mutation in Tim10p. The deafness dystonia syndrome thus is a novel type of mitochondrial disease that probably is caused by a defective mitochondrial protein-import system.
Resumo:
Reading and listening involve complex psychological processes that recruit many brain areas. The anatomy of processing English words has been studied by a variety of imaging methods. Although there is widespread agreement on the general anatomical areas involved in comprehending words, there are still disputes about the computations that go on in these areas. Examination of the time relations (circuitry) among these anatomical areas can aid in understanding their computations. In this paper, we concentrate on tasks that involve obtaining the meaning of a word in isolation or in relation to a sentence. Our current data support a finding in the literature that frontal semantic areas are active well before posterior areas. We use the subject’s attention to amplify relevant brain areas involved either in semantic classification or in judging the relation of the word to a sentence to test the hypothesis that frontal areas are concerned with lexical semantics and posterior areas are more involved in comprehension of propositions that involve several words.
Resumo:
This review discusses how neuroimaging can contribute to our understanding of a fundamental aspect of skilled reading: the ability to pronounce a visually presented word. One contribution of neuroimaging is that it provides a tool for localizing brain regions that are active during word reading. To assess the extent to which similar results are obtained across studies, a quantitative review of nine neuroimaging investigations of word reading was conducted. Across these studies, the results converge to reveal a set of areas active during word reading, including left-lateralized regions in occipital and occipitotemporal cortex, the left frontal operculum, bilateral regions within the cerebellum, primary motor cortex, and the superior and middle temporal cortex, and medial regions in the supplementary motor area and anterior cingulate. Beyond localization, the challenge is to use neuroimaging as a tool for understanding how reading is accomplished. Central to this challenge will be the integration of neuroimaging results with information from other methodologies. To illustrate this point, this review will highlight the importance of spelling-to-sound consistency in the transformation from orthographic (word form) to phonological (word sound) representations, and then explore results from three neuroimaging studies in which the spelling-to-sound consistency of the stimuli was deliberately varied. Emphasis is placed on the pattern of activation observed within the left frontal cortex, because the results provide an example of the issues and benefits involved in relating neuroimaging results to behavioral results in normal and brain damaged subjects, and to theoretical models of reading.